Molecular Mechanisms and Pathology of Gastric Carcinogenesis: Sporadic Cancers

  • Shuko Harada
  • Antonia R. SepulvedaEmail author
Part of the Molecular Pathology Library book series (MPLB, volume 7)


Gastric carcinoma (GC) is the most frequent malignancy arising in the stomach and represents the fourth most frequent cancer worldwide. In this chapter, we will review major advances that have contributed to unraveling the underlying mechanisms of gastric carcinogenesis, including the identification of Helicobacter pylori gastritis as a major factor in gastric cancer development and subsequent studies characterizing the complex molecular alterations in gastric mucosa induced by H. pylori infection, EBV-associated gastric cancer, and genome-wide molecular studies combined with hypothesis-driven research that have provided molecular approaches for gastric cancer classification and identification of genes and specific pathways potentially amenable to personalized targeted therapies.


Gastric Cancer Gastric Carcinoma Pylorus Infection Intestinal Metaplasia Gastric Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.PubMedCrossRefGoogle Scholar
  2. 2.
    Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24:2137–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Howlader N, Noone AM, Krapcho M, et al., eds. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). Bethesda, MD: National Cancer Institute; 2012.Google Scholar
  4. 4.
    Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst. 2008;100:1184–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Palli D. Epidemiology of gastric cancer: an evaluation of available evidence. J Gastroenterol. 2000;35(Suppl 12):84–9.PubMedGoogle Scholar
  6. 6.
    Sriamporn S, Setiawan V, Pisani P, et al. Gastric cancer: the roles of diet, alcohol drinking, smoking and Helicobacter pylori in Northeastern Thailand. Asian Pac J Cancer Prev. 2002;3:345–352.PubMedGoogle Scholar
  7. 7.
    Brenner H, Arndt V, Bode G, Stegmaier C, Ziegler H, Stumer T. Risk of gastric cancer among smokers infected with Helicobacter pylori. Int J Cancer. 2002;98:446–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Gologan A, Graham DY, Sepulveda AR. Molecular markers in Helicobacter pylori-associated gastric carcinogenesis. Clin Lab Med. 2005;25:197–222.PubMedCrossRefGoogle Scholar
  9. 9.
    Edge S, Byrd D, Compton C, Fritz A, Greene F, Trotti A III. Stomach. AJCC Cancer Staging manual. 7th ed. NY: Springer; 2010:117–126.Google Scholar
  10. 10.
    Bosman F, Carneiro F, Hruban R, Theise N. Tumours of the stomach. WHO classification of tumors of the digestive system. Lyon: IARC; 2010:46–80.Google Scholar
  11. 11.
    Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma an attempt at a histo-clinical classification. Acta Pathol et Microbiol Scandinav. 1965;64:31–49.Google Scholar
  12. 12.
    Watanabe H, Jass JR, Sobin LH. Histological typing of esophageal and gastric tumors. WHO International Classification of Tumors. 2nd ed. Berlin: Springer; 1990.CrossRefGoogle Scholar
  13. 13.
    Greene F, Page D, Fleming I, et al. AJCC cancer staging manual. 6th ed. New York: Springer-Verlag; 2002.Google Scholar
  14. 14.
    Sepulveda A, Aisner D. Molecular Basis of Diseases of the Gastrointestinal Tract. In: Coleman WB, Tsongalis GJ, eds. Molecular pathology: the molecular basis of human disease. Academic Press; 2009:365–393.Google Scholar
  15. 15.
    Tan IB, Ivanova T, Lim KH, et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology. 2011;141:476–85. 485 e1–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Arkenau HT. Gastric cancer in the era of molecularly targeted agents: current drug development strategies. J Cancer Res Clin Oncol. 2009;135:855–66.PubMedCrossRefGoogle Scholar
  17. 17.
    Warren JR, Marshall B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet. 1983;1:1273–1275.Google Scholar
  18. 18.
    Marshall BJ. Helicobacter pylori: the etiologic agent for peptic ulcer. JAMA. 1995;274:1064–1066.PubMedCrossRefGoogle Scholar
  19. 19.
    Parsonnet J, Friedman GD, Vandersteen DP, et al. Helicobacter pylori and the risk of gastric carcinoma. N Eng J Med. 1991;325:1127–1131.CrossRefGoogle Scholar
  20. 20.
    Herrera V, Parsonnet J. Helicobacter pylori and gastric adenocarcinoma. Clin Microbiol Infect. 2009;15:971–6.PubMedCrossRefGoogle Scholar
  21. 21.
    International Agency for Research of Cancer. Shistosomes, liver flukes and Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum. 1994;61:1–241.Google Scholar
  22. 22.
    Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev. 2006;19:449–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Isaacson PG, Spencer J. Gastric lymphoma and Helicobacter pylori. Important Adv Oncol 1996:111–21.Google Scholar
  24. 24.
    Bouzourene H, Haefliger T, Delacretaz F, Saraga E. The role of Helicobacter pylori in primary gastric MALT lymphoma. Histopathology. 1999;34:118–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Sepulveda A, Goyal A. Helicobacter and gastric neoplasms. In: Tan DaL G, ed. Advances in surgical pathology: gastric cancer. Philadelphia: Lippincott Williams and Wilkins; 2011:22–37.Google Scholar
  26. 26.
    Makola D, Peura DA, Crowe SE. Helicobacter pylori infection and related gastrointestinal diseases. J Clin Gastroenterol. 2007;41:548–58.PubMedCrossRefGoogle Scholar
  27. 27.
    Goodman KJ, Correa P. The transmission of Helicobacter pylori. A critical review of the evidence. Int J Epidemiol. 1995;24:875–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Malfertheiner P, Megraud F, O’Morain C, et al. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut. 2007;56:772–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Chey WD, Wong BC. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Am J Gastroenterol. 2007;102:1808–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Asaka M, Sugiyama T, Nobuta A, Kato M, Takeda H, Graham DY. Atrophic gastritis and intestinal metaplasia in Japan: results of a large multicenter study. Helicobacter. 2001;6:294–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Correa P. Helicobacter pylori and gastric carcinogenesis. Am J Surg Pathol. 1995;19:S37-S43.PubMedCrossRefGoogle Scholar
  32. 32.
    Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez GI, Blaser MJ. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med. 1991;325:1132–1136.PubMedCrossRefGoogle Scholar
  33. 33.
    Dixon MF. Histological responses to Helicobacter pylori infection: gastritis, atrophy and preneoplasia. Baillieres Clin Gastroenterol. 1995;9:467–86.PubMedCrossRefGoogle Scholar
  34. 34.
    Recavarren-Arce S, Leon-Barua R, Cok J, et al. Helicobacter pylori and progressive gastric pathology that predisposes to gastric cancer. Scand J Gastroenterol Suppl. 1991;181:51–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Kodama K, Sumii K, Kawano M, et al. Gastric juice nitrite and vitamin C in patients with gastric cancer and atrophic gastritis: is low acidity solely responsible for cancer risk? Eur J Gastroenterol Hepatol. 2003;15:987–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Sepulveda A, Peterson LE, Shelton J, Gutierrez O, Graham DY. Histological patterns of gastritis in H. pylori-infected individuals with a family history of gastric cancer. Am J Gastroenterol. 2002;97:1365–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Leung WK, Kim JJ, Kim JG, Graham DY, Sepulveda AR. Microsatellite instability in gastric intestinal metaplasia in patients with and without gastric cancer. Am J Pathol. 2000;156:537–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res. 1999;59:5438–42.PubMedGoogle Scholar
  39. 39.
    Kang GH, Shim YH, Jung HY, Kim WH, Ro JY, Rhyu MG. CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res. 2001;61:2847–51.PubMedGoogle Scholar
  40. 40.
    To KF, Leung WK, Lee TL, et al. Promoter hypermethylation of tumor-related genes in gastric intestinal metaplasia of patients with and without gastric cancer. Int J Cancer. 2002;102:623–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Waki T, Tamura G, Sato M, Terashima M, Nishizuka S, Motoyama T. Promoter methylation status of DAP-kinase and RUNX3 genes in neoplastic and non-neoplastic gastric epithelia. Cancer Sci. 2003;94:360–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Kang GH, Lee S, Kim JS, Jung HY. Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest. 2003;83:635–41.PubMedGoogle Scholar
  43. 43.
    Lee JH, Park SJ, Abraham SC, et al. Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas. Oncogene. 2004;23:4646–54.PubMedCrossRefGoogle Scholar
  44. 44.
    Sepulveda AR, Jones D, Ogino S, et al. CpG methylation analysis–current status of clinical assays and potential applications in molecular diagnostics: a report of the Association for Molecular Pathology. J Mol Diagn. 2009;11:266–78.PubMedCrossRefGoogle Scholar
  45. 45.
    Mikata R, Yokosuka O, Fukai K, et al. Analysis of genes upregulated by the demethylating agent 5-aza-2′-deoxycytidine in gastric cancer cell lines. Int J Cancer. 2006;119:1616–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Huang JQ, Sridhar S, Chen Y, Hunt RH. Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology. 1998;114:1169–79.PubMedCrossRefGoogle Scholar
  47. 47.
    Sepulveda AR, Wu L, Ota H, et al. Molecular identification of main cellular lineages as a tool for the classification of gastric cancer. Hum Pathol. 2000;31:566–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology. 1998;115:642–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Sugiyama A, Maruta F, Ikeno T, et al. Helicobacter pylori infection enhances N-methyl-N-nitrosourea-induced stomach carcinogenesis in the Mongolian gerbil. Cancer Res. 1998;58:2067–9.PubMedGoogle Scholar
  51. 51.
    Honda S, Fujioka T, Tokieda M, Satoh R, Nishizono A, Nasu M. Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Res. 1998;58:4255–9.PubMedGoogle Scholar
  52. 52.
    Shimizu N, Inada K, Nakanishi H, et al. Helicobacter pylori infection enhances glandular stomach carcinogenesis in Mongolian gerbils treated with chemical carcinogens. Carcinogenesis. 1999;20:669–76.PubMedCrossRefGoogle Scholar
  53. 53.
    Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–71.PubMedCrossRefGoogle Scholar
  54. 54.
    Franco AT, Johnston E, Krishna U, et al. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 2008;68:379–87.PubMedCrossRefGoogle Scholar
  55. 55.
    Mills JC, Shivdasani RA. Gastric epithelial stem cells. Gastroenterology. 2011;140:412–24.PubMedCrossRefGoogle Scholar
  56. 56.
    Barker N, Huch M, Kujala P, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25–36.PubMedCrossRefGoogle Scholar
  57. 57.
    Qiao XT, Gumucio DL. Current molecular markers for gastric progenitor cells and gastric cancer stem cells. J Gastroenterol. 2011;46:855–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Simon E, Petke D, Boger C, et al. The spatial distribution of LGR5+ cells correlates with gastric cancer progression. PLoS One. 2012;7:e35486.PubMedCrossRefGoogle Scholar
  59. 59.
    Uehara T, Ma D, Yao Y, Lynch JP, N. M, Ziober A, Feldman M, Ota H, Sepulveda AR. H. pylori infection is associated with DNA damage of Lgr5-positive epithelial stem cells in the stomach of patients with gastric cancer. Dig Dis Sci 2012. (Epub ahead of print).Google Scholar
  60. 60.
    Quante M, Marrache F, Goldenring JR, Wang TC. TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa. Gastroenterology. 2010;139:2018–2027. e2.PubMedCrossRefGoogle Scholar
  61. 61.
    May R, Sureban SM, Hoang N, et al. Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively. Stem Cells. 2009;27:2571–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27:1006–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Correa P, Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology. 2007;133:659–72.PubMedCrossRefGoogle Scholar
  64. 64.
    Giannakis M, Chen SL, Karam SM, Engstrand L, Gordon JI. Helicobacter pylori evolution during progression from chronic atrophic gastritis to gastric cancer and its impact on gastric stem cells. Proc Natl Acad Sci USA. 2008;105:4358–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Katoh M. Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther. 2007;6:832–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Wen S, Moss SF. Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Lett. 2009;282:1–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Mascellino MT, Margani M, Oliva A. Helicobacter pylori: determinant and markers of virulence. Dis Markers. 2009;27:137–56.PubMedGoogle Scholar
  68. 68.
    Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol. 2005;3:320–32.PubMedCrossRefGoogle Scholar
  69. 69.
    Handa O, Naito Y, Yoshikawa T. CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling. Biochem Pharmacol. 2007;73:1697–702.PubMedCrossRefGoogle Scholar
  70. 70.
    Rad R, Gerhard M, Lang R, et al. The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response. J Immunol. 2002;168:3033–41.PubMedGoogle Scholar
  71. 71.
    Gerhard M, Lehn N, Neumayer N, et al. Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc Natl Acad Sci USA. 1999;96:12778–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Torres VJ, VanCompernolle SE, Sundrud MS, Unutmaz D, Cover TL. Helicobacter pylori vacuolating cytotoxin inhibits activation-induced proliferation of human T and B lymphocyte subsets. J Immunol. 2007;179:5433–40.PubMedGoogle Scholar
  73. 73.
    Censini S, Lange C, Xiang Z, et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-­associated virulence factors. Proc Natl Acad Sci USA. 1996;93:14648–53.PubMedCrossRefGoogle Scholar
  74. 74.
    Parsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection [see comments]. Gut. 1997;40:297–301.PubMedGoogle Scholar
  75. 75.
    Yamaoka Y, Kodama T, Kashima K, Graham DY, Sepulveda AR. Variants of the 3’ region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases. J Clin Microbiol. 1998;36:2258–63.PubMedGoogle Scholar
  76. 76.
    Hatakeyama M, Higashi H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 2005;96:835–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Crabtree JE, Wyatt JI, Trejdosiewicz LK, et al. Interleukin-8 expression in Helicobacter pylori infected, normal, and neoplastic gastroduodenal mucosa. J Clin Pathol. 1994;47:61–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Crabtree JE, Covacci A, Farmery SM, et al. Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype. J Clin Pathol. 1995;48:41–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Sepulveda AR, Yao Y, Yan W, et al. CpG methylation and reduced expression of O6-methylguanine DNA methyltransferase is associated with Helicobacter pylori infection. Gastroenterology. 2010;138:1836–44.PubMedCrossRefGoogle Scholar
  80. 80.
    Ohnishi N, Yuasa H, Tanaka S, et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA. 2008;105:1003–8.PubMedCrossRefGoogle Scholar
  81. 81.
    El-Omar EM, Carrington M, Chow WH, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature. 2000;404:398–402.PubMedCrossRefGoogle Scholar
  82. 82.
    El-Omar EM, Rabkin CS, Gammon MD, et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology. 2003;124:1193–201.PubMedCrossRefGoogle Scholar
  83. 83.
    El-Omar EM. Role of host genes in sporadic gastric cancer. Best Pract Res Clin Gastroenterol. 2006;20:675–86.PubMedCrossRefGoogle Scholar
  84. 84.
    Machado JC, Figueiredo C, Canedo P, et al. A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology. 2003;125:364–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Peek RM Jr, Wirth HP, Moss SF, et al. Helicobacter pylori alters gastric epithelial cell cycle events and gastrin secretion in Mongolian gerbils. Gastroenterology. 2000;118:48–59.PubMedCrossRefGoogle Scholar
  86. 86.
    Chattopadhyay R, Bhattacharyya A, Crowe SE. Dual regulation by apurinic/apyrimidinic endonuclease-1 inhibits gastric epithelial cell apoptosis during Helicobacter pylori infection. Cancer Res. 2010;70:2799–808.PubMedCrossRefGoogle Scholar
  87. 87.
    Kobayashi K, Okamoto T, Takayama S, Akiyama M, Ohno T, Yamada H. Genetic instability in intestinal metaplasia is a frequent event leading to well-differentiated early adenocarcinoma of the stomach. Eur J Cancer. 2000;36:1113–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Correa P, Shiao Y-H. Phenotypic and genotypic events in gastric carcinogenesis. Cancer Res. 1994;54(Supplement): 1941–1943.Google Scholar
  89. 89.
    Nakatsuru S, Yanagisawa A, Furukawa Y, et al. Somatic mutations of the APC gene in precancerous lesion of the stomach. Hum Mol Genet. 1993;2:1463–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Shiao YH, Rugge M, Correa P, Lehmann HP, Scheer WD. p53 alteration in gastric precancerous lesions. Am J Pathol. 1994;144:511–7.PubMedGoogle Scholar
  91. 91.
    Imatani A, Sasano H, Asaki S, et al. Analysis of p53 abnormalities in endoscopic gastric biopsies. Anticancer Res. 1996;16:2049–56.PubMedGoogle Scholar
  92. 92.
    Maesawa C, Tamura G, Suzuki Y, et al. The sequential accumulation of genetic alterations characteristic of the colorectal adenoma-carcinoma sequence does not occur between gastric adenoma and adenocarcinoma. J Pathol. 1995;176:249–58.PubMedCrossRefGoogle Scholar
  93. 93.
    Abraham SC, Park SJ, Lee JH, Mugartegui L, Wu TT. Genetic alterations in gastric adenomas of intestinal and foveolar phenotypes. Mod Pathol. 2003;16:786–95.PubMedCrossRefGoogle Scholar
  94. 94.
    Lee HS, Choi SI, Lee HK, et al. Distinct clinical features and outcomes of gastric cancers with microsatellite instability. Mod Pathol. 2002;15:632–40.PubMedCrossRefGoogle Scholar
  95. 95.
    Hunt JD, Mera R, Strimas A, et al. KRAS mutations are not predictive for progression of preneoplastic gastric lesions. Cancer Epidemiol Biomarkers Prev. 2001;10:79–80.PubMedGoogle Scholar
  96. 96.
    Lee JH, Abraham SC, Kim HS, et al. Inverse relationship between APC gene mutation in gastric adenomas and development of adenocarcinoma. Am J Pathol. 2002;161:611–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Wang K, Kan J, Yuen ST, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 2011;43:1219–23.PubMedCrossRefGoogle Scholar
  98. 98.
    Zang ZJ, Cutcutache I, Poon SL, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44:570–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Shimada T, Watanabe N, Hiraishi H, Terano A. Redox regulation of interleukin-8 expression in MKN28 cells. Dig Dis Sci. 1999;44:266–73.PubMedCrossRefGoogle Scholar
  100. 100.
    Verhulst ML, van Oijen AH, Roelofs HM, Peters WH, Jansen JB. Antral glutathione concentration and glutathione S-transferase activity in patients with and without Helicobacter pylori. Dig Dis Sci. 2000;45:629–32.PubMedCrossRefGoogle Scholar
  101. 101.
    Farinati F, Cardin R, Degan P, et al. Oxidative DNA damage accumulation in gastric carcinogenesis. Gut. 1998;42:351–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Hahm KB, Lee KJ, Choi SY, et al. Possibility of chemoprevention by the eradication of Helicobacter pylori: oxidative DNA damage and apoptosis in H. pylori infection. Am J Gastroenterol. 1997;92:1853–7.PubMedGoogle Scholar
  103. 103.
    Chiba T, Marusawa H. A novel mechanism for inflammation-associated carcinogenesis; an important role of activation-induced cytidine deaminase (AID) in mutation induction. J Mol Med (Berl). 2009;87:1023–7.CrossRefGoogle Scholar
  104. 104.
    Yao Y, Tao H, Park DI, Sepulveda JL, Sepulveda AR. Demonstration and characterization of mutations induced by Helicobacter pylori organisms in gastric epithelial cells. Helicobacter. 2006;11:272–86.PubMedCrossRefGoogle Scholar
  105. 105.
    Park DI, Park SH, Kim SH, et al. Effect of Helicobacter pylori infection on the expression of DNA mismatch repair protein. Helicobacter. 2005;10:179–84.PubMedCrossRefGoogle Scholar
  106. 106.
    Kim JJ, Tao H, Carloni E, Leung WK, Graham DY, Sepulveda AR. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology. 2002;123:542–53.PubMedCrossRefGoogle Scholar
  107. 107.
    Umar A. Lynch syndrome (HNPCC) and microsatellite instability. Dis Markers. 2004;20:179–80.PubMedGoogle Scholar
  108. 108.
    Semba S, Yokozaki H, Yamamoto S, Yasui W, Tahara E. Microsatellite instability in precancerous lesions and adenocarcinomas of the stomach. Cancer. 1996;77:1620–7.PubMedGoogle Scholar
  109. 109.
    Hamamoto T, Yokozaki H, Semba S, et al. Altered microsatellites in incomplete-type intestinal metaplasia adjacent to primary gastric cancers. J Clin Pathol. 1997;50:841–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Ottini L, Palli D, Falchetti M, et al. Microsatellite instability in gastric cancer is associated with tumor location and family history in a high-risk population from Tuscany. Cancer Res. 1997;57:4523–9.PubMedGoogle Scholar
  111. 111.
    Fang DC, Jass JR, Wang DX, Zhou XD, Luo YH, Young J. Infrequent loss of heterozygosity of APC/MCC and DCC genes in gastric cancer showing DNA microsatellite instability. J Clin Pathol. 1999;52:504–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Ling XL, Fang DC, Wang RQ, Yang SM, Fang L. Mitochondrial microsatellite instability in gastric cancer and its precancerous lesions. World J Gastroenterol. 2004;10:800–3.PubMedGoogle Scholar
  113. 113.
    Kashiwagi K, Watanabe M, Ezaki T, et al. Clinical usefulness of microsatellite instability for the prediction of gastric adenoma or adenocarcinoma in patients with chronic gastritis. Br J Cancer. 2000;82:1814–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Wu MS, Lee CW, Shun CT, et al. Clinicopathological significance of altered loci of replication error and microsatellite instability-associated mutations in gastric cancer. Cancer Res. 1998;58:1494–7.PubMedGoogle Scholar
  115. 115.
    Wu MS, Lee CW, Shun CT, et al. Distinct clinicopathologic and genetic profiles in sporadic gastric cancer with different mutator phenotypes. Genes Chromosomes Cancer. 2000;27:403–11.PubMedCrossRefGoogle Scholar
  116. 116.
    Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96:261–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Baek MJ, Kang H, Kim SE, et al. Expression of hMLH1 is inactivated in the gastric adenomas with enhanced microsatellite instability. Br J Cancer. 2001;85:1147–52.PubMedCrossRefGoogle Scholar
  118. 118.
    Fleisher AS, Esteller M, Tamura G, et al. Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene. 2001;20:329–35.PubMedCrossRefGoogle Scholar
  119. 119.
    Edmonston TB, Cuesta KH, Burkholder S, et al. Colorectal carcinomas with high microsatellite instability: defining a distinct immunologic and molecular entity with respect to prognostic markers. Hum Pathol. 2000;31:1506–14.PubMedCrossRefGoogle Scholar
  120. 120.
    Kim SS, Bhang CS, Min KO, et al. p53 mutations and microsatellite instabilities in the subtype of intestinal metaplasia of the stomach. J Korean Med Sci. 2002;17:490–6.PubMedGoogle Scholar
  121. 121.
    Hayden JD, Martin IG, Cawkwell L, Quirke P. The role of microsatellite instability in gastric carcinoma. Gut. 1998;42:300–3.PubMedCrossRefGoogle Scholar
  122. 122.
    Strickler JG, Zheng J, Shu Q, Burgart LJ, Alberts SR, Shibata D. p53 mutations and microsatellite instability in sporadic gastric cancer: when guardians fail. Cancer Res. 1994;54:4750–5.PubMedGoogle Scholar
  123. 123.
    Sepulveda AR, Santos AC, Yamaoka Y, et al. Marked differences in the frequency of microsatellite instability in gastric cancer from different countries. Am J Gastroenterol. 1999;94:3034–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Yamamoto H, Sawai H, Perucho M. Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res. 1997;57:4420–6.PubMedGoogle Scholar
  125. 125.
    Shinmura K, Tani M, Isogaki J, Wang Y, Sugimura H, Yokota J. RER phenotype and its associated mutations in familial gastric cancer. Carcinogenesis. 1998;19:247–51.PubMedCrossRefGoogle Scholar
  126. 126.
    Myeroff LL, Parsons R, Kim SJ, et al. A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res. 1995;55:5545–7.PubMedGoogle Scholar
  127. 127.
    Chung YJ, Park SW, Song JM, et al. Evidence of genetic progression in human gastric carcinomas with microsatellite instability. Oncogene. 1997;15:1719–26.PubMedCrossRefGoogle Scholar
  128. 128.
    Kim JJ, Baek MJ, Kim L, et al. Accumulated frameshift mutations at coding nucleotide repeats during the progression of gastric carcinoma with microsatellite instability. Lab Invest. 1999;79:1113–20.PubMedGoogle Scholar
  129. 129.
    Kim HS, Woo DK, Bae SI, Kim YI, Kim WH. Microsatellite instability in the adenoma-carcinoma sequence of the stomach. Lab Invest. 2000;80:57–64.PubMedCrossRefGoogle Scholar
  130. 130.
    Farinati F, Cardin R, Bortolami M, et al. Oxidative DNA damage in gastric cancer: CagA status and OGG1 gene polymorphism. Int J Cancer. 2008;123:51–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Park TJ, Han SU, Cho YK, Paik WK, Kim YB, Lim IK. Methylation of O(6)-methylguanine-DNA methyltransferase gene is associated significantly with K-ras mutation, lymph node invasion, tumor staging, and disease free survival in patients with gastric carcinoma. Cancer. 2001;92:2760–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Kang GH, Lee HJ, Hwang KS, Lee S, Kim JH, Kim JS. Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation. Am J Pathol. 2003;163:1551–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Chan AO, Chu KM, Huang C, et al. Association between Helicobacter pylori infection and interleukin 1beta polymorphism predispose to CpG island methylation in gastric cancer. Gut. 2007;56:595–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Qian X, Huang C, Cho CH, Hui WM, Rashid A, Chan AO. E-cadherin promoter hypermethylation induced by interleukin-1beta treatment or H. pylori infection in human gastric cancer cell lines. Cancer Lett. 2008;263:107–13.PubMedCrossRefGoogle Scholar
  135. 135.
    Chan AO, Peng JZ, Lam SK, et al. Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut. 2006;55:463–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Hasegawa S, Furukawa Y, Li M, et al. Genome-wide analysis of gene expression in intestinal-type gastric cancers using a complementary DNA microarray representing 23,040 genes. Cancer Res. 2002;62:7012–7.PubMedGoogle Scholar
  137. 137.
    Hippo Y, Taniguchi H, Tsutsumi S, et al. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 2002;62:233–40.PubMedGoogle Scholar
  138. 138.
    Lee S, Baek M, Yang H, et al. Identification of genes differentially expressed between gastric cancers and normal gastric mucosa with cDNA microarrays. Cancer Lett. 2002;184:197–206.PubMedCrossRefGoogle Scholar
  139. 139.
    Kim B, Bang S, Lee S, et al. Expression profiling and subtype-specific expression of stomach cancer. Cancer Res. 2003;63: 8248–55.PubMedGoogle Scholar
  140. 140.
    Wu MS, Lin YS, Chang YT, Shun CT, Lin MT, Lin JT. Gene expression profiling of gastric cancer by microarray combined with laser capture microdissection. World J Gastroenterol. 2005;11:7405–12.PubMedGoogle Scholar
  141. 141.
    Kim SY, Kim JH, Lee HS, et al. Meta- and gene set analysis of stomach cancer gene expression data. Mol Cells. 2007;24:200–9.PubMedGoogle Scholar
  142. 142.
    Myllykangas S, Junnila S, Kokkola A, et al. Integrated gene copy number and expression microarray analysis of gastric cancer highlights potential target genes. Int J Cancer. 2008;123:817–25.PubMedCrossRefGoogle Scholar
  143. 143.
    Boussioutas A, Li H, Liu J, et al. Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Res. 2003;63:2569–77.PubMedGoogle Scholar
  144. 144.
    Jinawath N, Furukawa Y, Hasegawa S, et al. Comparison of gene-expression profiles between diffuse- and intestinal-type gastric cancers using a genome-wide cDNA microarray. Oncogene. 2004;23:6830–44.PubMedCrossRefGoogle Scholar
  145. 145.
    Meireles SI, Cristo EB, Carvalho AF, et al. Molecular classifiers for gastric cancer and nonmalignant diseases of the gastric mucosa. Cancer Res. 2004;64:1255–65.PubMedCrossRefGoogle Scholar
  146. 146.
    Meireles SI, Carvalho AF, Hirata R, et al. Differentially expressed genes in gastric tumors identified by cDNA array. Cancer Lett. 2003;190:199–211.PubMedCrossRefGoogle Scholar
  147. 147.
    Belair C, Darfeuille F, Staedel C. Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect. 2009;15:806–12.PubMedCrossRefGoogle Scholar
  148. 148.
    Zhang Z, Li Z, Gao C, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008;88:1358–66.PubMedCrossRefGoogle Scholar
  149. 149.
    Volinia S, Calin GA, Liu CG, et al. A microRNA expression ­signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.PubMedCrossRefGoogle Scholar
  150. 150.
    Chan SH, Wu CW, Li AF, Chi CW, Lin WC. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res. 2008;28:907–11.PubMedGoogle Scholar
  151. 151.
    Liu R, Zhang C, Hu Z, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer. 2011;47:784–91.PubMedCrossRefGoogle Scholar
  152. 152.
    Lam EK, Wang X, Shin VY, et al. A microRNA contribution to aberrant Ras activation in gastric cancer. Am J Transl Res. 2011;3:209–18.PubMedGoogle Scholar
  153. 153.
    Yao Y, Suo AL, Li ZF, et al. MicroRNA profiling of human gastric cancer. Mol Med Report. 2009;2:963–70.PubMedGoogle Scholar
  154. 154.
    Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt’s Lymphoma. Lancet. 1964;1:702–3.PubMedCrossRefGoogle Scholar
  155. 155.
    Henle G, Henle W, Diehl V. Relation of Burkitt’s tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci USA. 1968;59:94–101.PubMedCrossRefGoogle Scholar
  156. 156.
    Rickinson A, Kieff E. Epstein–Barr virus. In: Knipe D, Howley P, eds. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007:2604–2701.Google Scholar
  157. 157.
    Shibata D, Tokunaga M, Uemura Y, Sato E, Tanaka S, Weiss LM. Association of Epstein-Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration Lymphoepithelioma-like carcinoma. Am J Pathol. 1991;139:469–74.PubMedGoogle Scholar
  158. 158.
    Shibata D, Weiss LM. Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol. 1992;140:769–74.PubMedGoogle Scholar
  159. 159.
    Lee JH, Kim SH, Han SH, An JS, Lee ES, Kim YS. Clinicopathological and molecular characteristics of Epstein-Barr virus-associated gastric carcinoma: a meta-analysis. J Gastroenterol Hepatol. 2009;24:354–65.PubMedCrossRefGoogle Scholar
  160. 160.
    Murphy G, Pfeiffer R, Camargo MC, Rabkin CS. Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology. 2009;137:824–33.PubMedCrossRefGoogle Scholar
  161. 161.
    Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–68.PubMedCrossRefGoogle Scholar
  162. 162.
    Yoshiyama H, Imai S, Shimizu N, Takada K. Epstein-Barr virus infection of human gastric carcinoma cells: implication of the existence of a new virus receptor different from CD21. J Virol. 1997;71:5688–91.PubMedGoogle Scholar
  163. 163.
    Smith PR, de Jesus O, Turner D, et al. Structure and coding content of CST (BART) family RNAs of Epstein-Barr virus. J Virol. 2000;74:3082–92.PubMedCrossRefGoogle Scholar
  164. 164.
    Decaussin G, Sbih-Lammali F, de Turenne-Tessier M, Bouguermouh A, Ooka T. Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res. 2000;60:5584–8.PubMedGoogle Scholar
  165. 165.
    zur Hausen A, Brink AA, Craanen ME, Middeldorp JM, Meijer CJ, van den Brule AJ. Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res. 2000;60:2745–8.PubMedGoogle Scholar
  166. 166.
    Akiba S, Koriyama C, Herrera-Goepfert R, Eizuru Y. Epstein-Barr virus associated gastric carcinoma: epidemiological and clinicopathological features. Cancer Sci. 2008;99:195–201.PubMedCrossRefGoogle Scholar
  167. 167.
    Uemura Y, Tokunaga M, Arikawa J, et al. A unique morphology of Epstein-Barr virus-related early gastric carcinoma. Cancer Epidemiol Biomarkers Prev. 1994;3:607–11.PubMedGoogle Scholar
  168. 168.
    Hirano N, Tsukamoto T, Mizoshita T, et al. Down regulation of gastric and intestinal phenotypic expression in Epstein-Barr virus-associated stomach cancers. Histol Histopathol. 2007;22:641–9.PubMedGoogle Scholar
  169. 169.
    Shinozaki A, Ushiku T, Morikawa T, et al. Epstein-Barr ­virus-associated gastric carcinoma: a distinct carcinoma of gastric phenotype by claudin expression profiling. J Histochem Cytochem. 2009;57:775–85.PubMedCrossRefGoogle Scholar
  170. 170.
    Fukayama M. Epstein-Barr virus and gastric carcinoma. Pathol Int. 2010;60:337–50.PubMedCrossRefGoogle Scholar
  171. 171.
    Imai S, Koizumi S, Sugiura M, et al. Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci USA. 1994;91:9131–5.PubMedCrossRefGoogle Scholar
  172. 172.
    Imai S, Nishikawa J, Takada K. Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J Virol. 1998;72:4371–8.PubMedGoogle Scholar
  173. 173.
    Yanai H, Murakami T, Yoshiyama H, et al. Epstein-Barr virus-associated gastric carcinoma and atrophic gastritis. J Clin Gastroenterol. 1999;29:39–43.PubMedCrossRefGoogle Scholar
  174. 174.
    Yamamoto N, Tokunaga M, Uemura Y, et al. Epstein-Barr virus and gastric remnant cancer. Cancer. 1994;74:805–9.PubMedCrossRefGoogle Scholar
  175. 175.
    Fukayama M, Hayashi Y, Iwasaki Y, et al. Epstein-Barr virus-associated gastric carcinoma and Epstein-Barr virus infection of the stomach. Lab Invest. 1994;71:73–81.PubMedGoogle Scholar
  176. 176.
    Ojima H, Fukuda T, Nakajima T, Nagamachi Y. Infrequent overexpression of p53 protein in Epstein-Barr virus-associated gastric carcinomas. Jpn J Cancer Res. 1997;88:262–6.PubMedCrossRefGoogle Scholar
  177. 177.
    Leung SY, Chau KY, Yuen ST, Chu KM, Branicki FJ, Chung LP. p53 overexpression is different in Epstein-Barr virus-associated and Epstein-Barr virus-negative carcinoma. Histopathology. 1998;33:311–7.PubMedGoogle Scholar
  178. 178.
    Schneider BG, Gulley ML, Eagan P, Bravo JC, Mera R, Geradts J. Loss of p16/CDKN2A tumor suppressor protein in gastric adenocarcinoma is associated with Epstein-Barr virus and anatomic location in the body of the stomach. Hum Pathol. 2000;31:45–50.PubMedCrossRefGoogle Scholar
  179. 179.
    Kang GH, Lee S, Kim WH, et al. Epstein-barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol. 2002;160:787–94.PubMedCrossRefGoogle Scholar
  180. 180.
    Etoh T, Kanai Y, Ushijima S. al. e. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am J Pathol. 2004;164:689–699.PubMedCrossRefGoogle Scholar
  181. 181.
    Tsai CL, Li HP, Lu YJ, et al. Activation of DNA methyltransferase 1 by EBV LMP1 Involves c-Jun NH(2)-terminal kinase signaling. Cancer Res. 2006;66:11668–76.PubMedCrossRefGoogle Scholar
  182. 182.
    Hino R, Uozaki H, Murakami N, et al. Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res. 2009;69:2766–74.PubMedCrossRefGoogle Scholar
  183. 183.
    Sudo M, Chong JM, Sakuma K, et al. Promoter hypermethylation of E-cadherin and its abnormal expression in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer. 2004;109:194–9.PubMedCrossRefGoogle Scholar
  184. 184.
    Shinozaki A, Sakatani T, Ushiku T, et al. Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res. 2010;70:4719–27.PubMedCrossRefGoogle Scholar
  185. 185.
    Van Cutsem E, Van de Velde C, Roth A, et al. Expert opinion on management of gastric and gastro-oesophageal junction adenocarcinoma on behalf of the European Organisation for Research and Treatment of Cancer (EORTC)-gastrointestinal cancer group. Eur J Cancer. 2008;44:182–94.PubMedCrossRefGoogle Scholar
  186. 186.
    Holbrook JD, Parker JS, Gallagher KT, et al. Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine. J Transl Med. 2011;9:119.PubMedCrossRefGoogle Scholar
  187. 187.
    Tanner M, Hollmen M, Junttila TT, et al. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol. 2005;16:273–8.PubMedCrossRefGoogle Scholar
  188. 188.
    Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol. 2008;19: 1523–9.PubMedCrossRefGoogle Scholar
  189. 189.
    Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. 2004;22:1201–8.PubMedCrossRefGoogle Scholar
  190. 190.
    Park SR, Kook MC, Choi IJ, et al. Predictive factors for the efficacy of cetuximab plus chemotherapy as salvage therapy in metastatic gastric cancer patients. Cancer Chemother Pharmacol. 2010;65:579–87.PubMedCrossRefGoogle Scholar
  191. 191.
    De Roock W, Piessevaux H, De Schutter J, et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol. 2008;19:508–15.PubMedCrossRefGoogle Scholar
  192. 192.
    Allegra CJ, Jessup JM, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol. 2009;27:2091–6.PubMedCrossRefGoogle Scholar
  193. 193.
    Hui KF, Chiang AK. Suberoylanilide hydroxamic acid induces viral lytic cycle in Epstein-Barr virus-positive epithelial malignancies and mediates enhanced cell death. Int J Cancer. 2010;126:2479–89.PubMedGoogle Scholar
  194. 194.
    Fu DX, Tanhehco Y, Chen J, et al. Bortezomib-induced enzyme-targeted radiation therapy in herpesvirus-associated tumors. Nat Med. 2008;14:1118–22.PubMedCrossRefGoogle Scholar
  195. 195.
    Lin J, Gilbert J, Rudek MA, et al. A phase I dose-finding study of 5-azacytidine in combination with sodium phenylbutyrate in patients with refractory solid tumors. Clin Cancer Res. 2009;15:6241–9.PubMedCrossRefGoogle Scholar
  196. 196.
    Farrell CJ, Lee JM, Shin EC, Cebrat M, Cole PA, Hayward SD. Inhibition of Epstein-Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide. Proc Natl Acad Sci USA. 2004;101:4625–30.PubMedCrossRefGoogle Scholar
  197. 197.
    Ian MX, Lan SZ, Cheng ZF, Dan H, Qiong LH. Suppression of EBNA1 expression inhibits growth of EBV-positive NK/T cell lymphoma cells. Cancer Biol Ther. 2008;7:1602–6.PubMedCrossRefGoogle Scholar
  198. 198.
    De Paoli P. Novel virally targeted therapies of EBV-associated tumors. Curr Cancer Drug Targets. 2008;8:591–6.PubMedGoogle Scholar
  199. 199.
    Okugawa K, Itoh T, Kawashima I, et al. Recognition of Epstein-Barr virus-associated gastric carcinoma cells by cytotoxic T lymphocytes induced in vitro with autologous lymphoblastoid cell line and LMP2-derived, HLA-A24-restricted 9-mer peptide. Oncol Rep. 2004;12:725–31.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Albama at BriminghamBirminghamUSA
  2. 2.Department of Pathology & Cell BiologyColumbia UniversityNew YorkUSA

Personalised recommendations