Skip to main content

Simulation in General Surgery

  • Chapter
  • First Online:
The Comprehensive Textbook of Healthcare Simulation

Abstract

Simulation in general surgery has had many advances in recent years. From the development of a variety of simulators to the creation of national skills curricula, the establishment of the accredited education institute network, and the refinement of assessment tools and metrics, the progress achieved signals a very bright future for the field. Surgical simulation will continue bringing the education and assessment of surgical trainees and practicing surgeons to new levels and is destined to improve patient care and outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin RF. Simulation and surgical competency. Foreword. Surg Clin North Am. 2010;90(3):xiii–xv.

    Google Scholar 

  2. Reznick RK, MacRae H. Teaching surgical skills – changes in the wind. N Engl J Med. 2006;355(25):2664–9.

    CAS  PubMed  Google Scholar 

  3. Choy I, Okrainec A. Simulation in surgery: perfecting the practice. Surg Clin North Am. 2010;90(3):457–73.

    PubMed  Google Scholar 

  4. Strasberg SM, Hertl M, Soper NJ. An analysis of the problem of biliary injury during laparoscopic cholecystectomy. J Am Coll Surg. 1995;180(1):101–25.

    CAS  PubMed  Google Scholar 

  5. Gallagher AG, Ritter EM, Champion H, et al. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg. 2005;241(2):364–72.

    PubMed  Google Scholar 

  6. Ketchum J, Bartless J. Laparotomy model. ACS/APDS surgical skills curriculum for residents: phase I, module 12. American College of Surgeons; 2009.

    Google Scholar 

  7. Scott DJ, Dunnington GL. The new ACS/APDS skills curriculum: moving the learning curve out of the operating room. J Gastrointest Surg. 2008;12(2):213–21.

    PubMed  Google Scholar 

  8. Heiner JD. A new simulation model for skin abscess identification and management. Simul Healthc. 2010;5(4):238–41.

    PubMed  Google Scholar 

  9. Sanchez A, Rodriguez O, Benitez G, Sanchez R, De la Fuente L. Development of a training model for laparoscopic common bile duct exploration. JSLS. 2010;14(1):41–7.

    PubMed Central  PubMed  Google Scholar 

  10. Scott DJ, Bergen PC, Rege RV, et al. Laparoscopic training on bench models: better and more cost effective than operating room experience? J Am Coll Surg. 2000;191(3):272–83.

    CAS  PubMed  Google Scholar 

  11. Fried GM, Feldman LS, Vassiliou MC, et al. Proving the value of simulation in laparoscopic surgery. Ann Surg. 2004;240(3):518–25; discussion 525–8.

    PubMed  Google Scholar 

  12. Derossis AM, Fried GM, Abrahamowicz M, Sigman HH, Barkun JS, Meakins JL. Development of a model for training and evaluation of laparoscopic skills. Am J Surg. 1998;175(6):482–7.

    CAS  PubMed  Google Scholar 

  13. Derossis AM, Bothwell J, Sigman HH, Fried GM. The effect of practice on performance in a laparoscopic simulator. Surg Endosc. 1998;12(9):1117–20.

    CAS  PubMed  Google Scholar 

  14. Fraser SA, Klassen DR, Feldman LS, Ghitulescu GA, Stanbridge D, Fried GM. Evaluating laparoscopic skills: setting the pass/fail score for the MISTELS system. Surg Endosc. 2003;17(6):964–7.

    CAS  PubMed  Google Scholar 

  15. Derossis AM, Antoniuk M, Fried GM. Evaluation of laparoscopic skills: a 2-year follow-up during residency training. Can J Surg. 1999;42(4):293–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Vassiliou MC, Dunkin BJ, Marks JM, Fried GM. FLS and FES: comprehensive models of training and assessment. Surg Clin North Am. 2010;90(3):535–58.

    PubMed  Google Scholar 

  17. Fundamentals of Laparoscopic Surgery. http://www.flsprogram.org. Accessed 31 Dec 2011.

  18. Willaert WI, Aggarwal R, Van Herzeele I, et al. Patient-specific endovascular simulation influences interventionalists performing carotid artery stenting procedures. Eur J Vasc Endovasc Surg. 2011;41(4):492–500.

    CAS  PubMed  Google Scholar 

  19. Stefanidis D, Hope WW, Scott DJ. Robotic suturing on the FLS model possesses construct validity, is less physically demanding, and is favored by more surgeons compared with laparoscopy. Surg Endosc. 2011;25(7):2141–6.

    PubMed  Google Scholar 

  20. Seymour NE, Gallagher AG, Roman SA, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236(4):458–63; discussion 463–4.

    PubMed  Google Scholar 

  21. Ahlberg G, Enochsson L, Gallagher AG, et al. Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg. 2007;193(6):797–804.

    PubMed  Google Scholar 

  22. Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P. Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg. 2004;91(2):146–50.

    CAS  PubMed  Google Scholar 

  23. Sturm LP, Windsor JA, Cosman PH, Cregan P, Hewett PJ, Maddern GJ. A systematic review of skills transfer after surgical simulation training. Ann Surg. 2008;248(2):166–79.

    PubMed  Google Scholar 

  24. Sroka G, Feldman LS, Vassiliou MC, Kaneva PA, Fayez R, Fried GM. Fundamentals of laparoscopic surgery simulator training to proficiency improves laparoscopic performance in the operating room-a randomized controlled trial. Am J Surg. 2010;199(1):115–20.

    PubMed  Google Scholar 

  25. McCluney AL, Vassiliou MC, Kaneva PA, et al. FLS simulator performance predicts intraoperative laparoscopic skill. Surg Endosc. 2007;21(11):1991–5.

    CAS  PubMed  Google Scholar 

  26. Haycock A, Koch AD, Familiari P, et al. Training and transfer of colonoscopy skills: a multinational, randomized, blinded, controlled trial of simulator versus bedside training. Gastrointest Endosc. 2010;71(2):298–307.

    PubMed  Google Scholar 

  27. Haycock AV, Youd P, Bassett P, Saunders BP, Tekkis P, Thomas-Gibson S. Simulator training improves practical skills in therapeutic GI endoscopy: results from a randomized, blinded, controlled study. Gastrointest Endosc. 2009;70(5):835–45.

    PubMed  Google Scholar 

  28. Chaer RA, Derubertis BG, Lin SC, et al. Simulation improves resident performance in catheter-based intervention: results of a randomized, controlled study. Ann Surg. 2006;244(3):343–52.

    PubMed  Google Scholar 

  29. Cohen J, Cohen SA, Vora KC, et al. Multicenter, randomized, controlled trial of virtual-reality simulator training in acquisition of competency in colonoscopy. Gastrointest Endosc. 2006;64(3):361–8.

    PubMed  Google Scholar 

  30. Barsuk JH, McGaghie WC, Cohen ER, O’Leary KJ, Wayne DB. Simulation-based mastery learning reduces complications during central venous catheter insertion in a medical intensive care unit. Crit Care Med. 2009;37(10):2697–701.

    PubMed  Google Scholar 

  31. Barsuk JH, Cohen ER, Feinglass J, McGaghie WC, Wayne DB. Use of simulation-based education to reduce catheter-related bloodstream infections. Arch Intern Med. 2009;169(15):1420–3.

    PubMed  Google Scholar 

  32. Zendejas B, Cook DA, Bingener J, et al. Simulation-based mastery learning improves patient outcomes in laparoscopic inguinal hernia repair: a randomized controlled trial. Ann Surg. 2011;254(3):502–9; discussion 509–11.

    PubMed  Google Scholar 

  33. Korndorffer Jr JR, Dunne JB, Sierra R, Stefanidis D, Touchard CL, Scott DJ. Simulator training for laparoscopic suturing using performance goals translates to the operating room. J Am Coll Surg. 2005;201(1):23–9.

    PubMed  Google Scholar 

  34. Stefanidis D, Acker C, Heniford BT. Proficiency-based laparoscopic simulator training leads to improved operating room skill that is resistant to decay. Surg Innov. 2008;15(1):69–73.

    PubMed  Google Scholar 

  35. Stefanidis D, Korndorffer Jr JR, Markley S, Sierra R, Heniford BT, Scott DJ. Closing the gap in operative performance between novices and experts: does harder mean better for laparoscopic simulator training? J Am Coll Surg. 2007;205(2):307–13.

    PubMed  Google Scholar 

  36. McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. A critical review of simulation-based medical education research: 2003–2009. Med Educ. 2010;44(1):50–63.

    PubMed  Google Scholar 

  37. McGaghie WC, Issenberg SB, Cohen ER, Barsuk JH, Wayne DB. Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Acad Med. 2011;86(6):706–11.

    PubMed Central  PubMed  Google Scholar 

  38. Stefanidis D, Scerbo MW, Korndorffer Jr JR, Scott DJ. Redefining simulator proficiency using automaticity theory. Am J Surg. 2007;193(4):502–6.

    PubMed  Google Scholar 

  39. O’Donnell RD, Eggemeier FT. Workload assessment methodology. In: Boff KR, Kaufman L, Thomas JP, editors. Handbook of perception and performance, cognitive processes and performance, vol. 2. New York: Wiley; 1986. p. 1–49.

    Google Scholar 

  40. Datta V, Mackay S, Mandalia M, Darzi A. The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model. J Am Coll Surg. 2001;193(5):479–85.

    CAS  PubMed  Google Scholar 

  41. Pellen MG, Horgan LF, Barton JR, Attwood SE. Construct validity of the ProMIS laparoscopic simulator. Surg Endosc. 2009;23(1):130–9.

    PubMed  Google Scholar 

  42. Stefanidis D, Scott DJ, Korndorffer Jr JR. Do metrics matter? Time versus motion tracking for performance assessment of proficiency-based laparoscopic skills training. Simul Healthc. 2009;4(2):104–8.

    PubMed  Google Scholar 

  43. Yurko YY, Scerbo MW, Prabhu AS, Acker CE, Stefanidis D. Higher mental workload is associated with poorer laparoscopic performance as measured by the NASA-TLX tool. Simul Healthc. 2010;5(5):267–71.

    PubMed  Google Scholar 

  44. Wilson M, McGrath J, Vine S, Brewer J, Defriend D, Masters R. Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts. Surg Endosc. 2010;24(10):2458–64.

    PubMed Central  PubMed  Google Scholar 

  45. Stefanidis D, Scerbo MW, Sechrist C, Mostafavi A, Heniford BT. Do novices display automaticity during simulator training? Am J Surg. 2008;195(2):210–3.

    PubMed  Google Scholar 

  46. Stefanidis D, Scerbo MW, Montero PN, Acker CE, Smith WD. Simulator training to automaticity leads to improved skill transfer compared with traditional proficiency-based training: a randomized controlled trial. Ann Surg. 2012;255(1):30–7.

    PubMed  Google Scholar 

  47. Vassiliou MC, Feldman LS, Andrew CG, et al. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg. 2005;190(1):107–13.

    PubMed  Google Scholar 

  48. Martin JA, Regehr G, Reznick R, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997;84(2):273–8.

    CAS  PubMed  Google Scholar 

  49. Hodges B, Regehr G, McNaughton N, Tiberius R, Hanson M. OSCE checklists do not capture increasing levels of expertise. Acad Med. 1999;74(10):1129–34.

    CAS  PubMed  Google Scholar 

  50. Regehr G, MacRae H, Reznick RK, Szalay D. Comparing the psychometric properties of checklists and global rating scales for assessing performance on an OSCE-format examination. Acad Med. 1998;73(9):993–7.

    CAS  PubMed  Google Scholar 

  51. Vassiliou MC, Kaneva PA, Poulose BK, et al. Global Assessment of Gastrointestinal Endoscopic Skills (GAGES): a valid measurement tool for technical skills in flexible endoscopy. Surg Endosc. 2010;24(8):1834–41.

    PubMed  Google Scholar 

  52. Satava RM. Disruptive visions: surgical education. Surg Endosc. 2004;18(5):779–81.

    CAS  PubMed  Google Scholar 

  53. Fried GM. Lessons from the surgical experience with simulators: incorporation into training and utilization in determining competency. Gastrointest Endosc Clin N Am. 2006;16(3):425–34.

    PubMed  Google Scholar 

  54. Kern DE, Thomas PA, Hughes MT. Curriculum development for medical education: a six-step approach, vol. 2. Baltimore: Johns Hopkins University Press; 2009.

    Google Scholar 

  55. Stefanidis D, Acker CE, Swiderski D, Heniford BT, Greene FL. Challenges during the implementation of a laparoscopic skills curriculum in a busy general surgery residency program. J Surg Educ. 2008;65(1):4–7.

    PubMed  Google Scholar 

  56. Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363–406.

    Google Scholar 

  57. Duvivier RJ, van Dalen J, Muijtjens AM, Moulaert VR, Van der Vleuten CP, Scherpbier AJ. The role of deliberate practice in the acquisition of clinical skills. BMC Med Educ. 2011;11(1):101.

    PubMed Central  PubMed  Google Scholar 

  58. Crochet P, Aggarwal R, Dubb SS, et al. Deliberate practice on a virtual reality laparoscopic simulator enhances the quality of surgical technical skills. Ann Surg. 2011;253(6):1216–22.

    PubMed  Google Scholar 

  59. Stefanidis D. Optimal acquisition and assessment of proficiency on simulators in surgery. Surg Clin North Am. 2010;90(3):475–89.

    PubMed  Google Scholar 

  60. Chang L, Petros J, Hess DT, Rotondi C, Babineau TJ. Integrating simulation into a surgical residency program: is voluntary participation effective? Surg Endosc. 2007;21(3):418–21.

    CAS  PubMed  Google Scholar 

  61. Stefanidis D, Korndorffer Jr JR, Heniford BT, Scott DJ. Limited feedback and video tutorials optimize learning and resource utilization during laparoscopic simulator training. Surgery. 2007;142(2):202–6.

    PubMed  Google Scholar 

  62. Xeroulis GJ, Park J, Moulton CA, Reznick RK, Leblanc V, Dubrowski A. Teaching suturing and knot-tying skills to medical students: a randomized controlled study comparing computer-based video instruction and (concurrent and summary) expert feedback. Surgery. 2007;141(4):442–9.

    PubMed  Google Scholar 

  63. Porte MC, Xeroulis G, Reznick RK, Dubrowski A. Verbal feedback from an expert is more effective than self-accessed feedback about motion efficiency in learning new surgical skills. Am J Surg. 2007;193(1):105–10.

    PubMed  Google Scholar 

  64. Mahmood T, Darzi A. The learning curve for a colonoscopy simulator in the absence of any feedback: no feedback, no learning. Surg Endosc. 2004;18(8):1224–30.

    CAS  PubMed  Google Scholar 

  65. Chang JY, Chang GL, Chien CJ, Chung KC, Hsu AT. Effectiveness of two forms of feedback on training of a joint mobilization skill by using a joint translation simulator. Phys Ther. 2007;87(4):418–30.

    PubMed  Google Scholar 

  66. Schmidt RA, Wulf G. Continuous concurrent feedback degrades skill learning: implications for training and simulation. Hum Factors. 1997;39(4):509–25.

    CAS  PubMed  Google Scholar 

  67. Rosser JC, Herman B, Risucci DA, Murayama M, Rosser LE, Merrell RC. Effectiveness of a CD-ROM multimedia tutorial in transferring cognitive knowledge essential for laparoscopic skill training. Am J Surg. 2000;179(4):320–4.

    CAS  PubMed  Google Scholar 

  68. Pearson AM, Gallagher AG, Rosser JC, Satava RM. Evaluation of structured and quantitative training methods for teaching intracorporeal knot tying. Surg Endosc. 2002;16(1):130–7.

    CAS  PubMed  Google Scholar 

  69. Magill RA. Motor learning and control. Concepts and applications. 7th ed. New York: McGraw-Hill; 2004.

    Google Scholar 

  70. Karni A, Meyer G, Rey-Hipolito C, et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA. 1998;95(3):861–8.

    CAS  PubMed  Google Scholar 

  71. Moulton CA, Dubrowski A, Macrae H, Graham B, Grober E, Reznick R. Teaching surgical skills: what kind of practice makes perfect? A randomized, controlled trial. Ann Surg. 2006;244(3):400–9.

    PubMed  Google Scholar 

  72. Donovan J, Radosevich DJ. A meta-analytic review of the distribution of practice effect: now you see it, now you don’t. J Appl Psychol. 1999;84(5):795–805.

    Google Scholar 

  73. Mitchell EL, Lee DY, Sevdalis N, et al. Evaluation of distributed practice schedules on retention of a newly acquired surgical skill: a randomized trial. Am J Surg. 2011;201(1):31–9.

    PubMed  Google Scholar 

  74. Aggarwal R, Grantcharov T, Moorthy K, Hance J, Darzi A. A competency-based virtual reality training curriculum for the acquisition of laparoscopic psychomotor skill. Am J Surg. 2006;191(1):128–33.

    PubMed  Google Scholar 

  75. Stefanidis D, Heniford BT. The formula for a successful laparoscopic skills curriculum. Arch Surg. 2009;144(1):77–82; discussion 82.

    PubMed  Google Scholar 

  76. Walters C, Acker C, Heniford BT, Greene FL, Stefanidis D. Performance goals on simulators boost resident motivation and skills lab attendance. J Am Coll Surg. 2008;207(3):S88.

    Google Scholar 

  77. Madan AK, Harper JL, Taddeucci RJ, Tichansky DS. Goal-directed laparoscopic training leads to better laparoscopic skill acquisition. Surgery. 2008;144(2):345–50.

    PubMed  Google Scholar 

  78. Gauger PG, Hauge LS, Andreatta PB, et al. Laparoscopic simulation training with proficiency targets improves practice and performance of novice surgeons. Am J Surg. 2010;199(1):72–80.

    PubMed  Google Scholar 

  79. ACS/APDS Surgical Skills Curriculum for Residents. 2009. http://elearning.facs.org. Accessed 10 Jan 2012.

  80. Sachdeva AK, Buyske J, Dunnington GL, et al. A new paradigm for surgical procedural training. Curr Probl Surg. 2011;48(12):854–968.

    PubMed  Google Scholar 

  81. Jacobs LM, Luk S. Advanced trauma operative management: surgical strategies for penetrating trauma. 2nd ed. Woodbury: Ciné-Med Publishing, Inc; 2010.

    Google Scholar 

  82. Jacobs LM, Burns KJ, Kaban JM, et al. Development and evaluation of the advanced trauma operative management course. J Trauma. 2003;55(3):471–9; discussion 479.

    PubMed  Google Scholar 

  83. Bandura A. Social foundations of thought and action: a social cognitive theory. Englewood Cliffs: Prentice Hall; 1986.

    Google Scholar 

  84. Fletcher GC, McGeorge P, Flin RH, Glavin RJ, Maran NJ. The role of non-technical skills in anaesthesia: a review of current literature. Br J Anaesth. 2002;88(3):418–29.

    CAS  PubMed  Google Scholar 

  85. Mishra A, Catchpole K, Dale T, McCulloch P. The influence of non-technical performance on technical outcome in laparoscopic cholecystectomy. Surg Endosc. 2008;22(1):68–73.

    CAS  PubMed  Google Scholar 

  86. Kwaan MR, Studdert DM, Zinner MJ, Gawande AA. Incidence, patterns, and prevention of wrong-site surgery. Arch Surg. 2006;141(4):353–7; discussion 357–8.

    PubMed  Google Scholar 

  87. Greenberg CC, Regenbogen SE, Studdert DM, et al. Patterns of communication breakdowns resulting in injury to surgical patients. J Am Coll Surg. 2007;204(4):533–40.

    PubMed  Google Scholar 

  88. Mazzocco K, Petitti DB, Fong KT, et al. Surgical team behaviors and patient outcomes. Am J Surg. 2009;197(5):678–85.

    PubMed  Google Scholar 

  89. Lingard L, Espin S, Whyte S, et al. Communication failures in the operating room: an observational classification of recurrent types and effects. Qual Saf Health Care. 2004;13(5):330–4.

    CAS  PubMed  Google Scholar 

  90. Helmrich RL, Davies JM. Team performance in the operating room. In: Bogner MS, editor. Human error in medicine. Hillside: Erlbaum; 1994. p. 225–53.

    Google Scholar 

  91. Belyansky I, Martin TR, Prabhu AS, et al. Poor resident-attending intraoperative communication may compromise patient safety. J Surg Res. 2011;171(2):386–94.

    PubMed  Google Scholar 

  92. Burke CS, Salas E, Wilson-Donnelly K, Priest H. How to turn a team of experts into an expert medical team: guidance from the aviation and military communities. Qual Saf Health Care. 2004;13 Suppl 1:i96–104.

    PubMed  Google Scholar 

  93. Bleakley A, Boyden J, Hobbs A, Walsh L, Allard J. Improving teamwork climate in operating theatres: the shift from multiprofessionalism to interprofessionalism. J Interprof Care. 2006;20(5):461–70.

    PubMed  Google Scholar 

  94. Undre S, Sevdalis N, Healey AN, Darzi SA, Vincent CA. Teamwork in the operating theatre: cohesion or confusion? J Eval Clin Pract. 2006;12(2):182–9.

    PubMed  Google Scholar 

  95. Makary MA, Sexton JB, Freischlag JA, et al. Operating room teamwork among physicians and nurses: teamwork in the eye of the beholder. J Am Coll Surg. 2006;202(5):746–52.

    PubMed  Google Scholar 

  96. Baker DP, Day R, Salas E. Teamwork as an essential component of high-reliability organizations. Health Serv Res. 2006;41(4 Pt 2):1576–98.

    PubMed  Google Scholar 

  97. Fernandez R, Vozenilek JA, Hegarty CB, et al. Developing expert medical teams: toward an evidence-based approach. Acad Emerg Med. 2008;15(11):1025–36.

    PubMed  Google Scholar 

  98. Paige JT, Kozmenko V, Yang T, et al. High-fidelity, simulation-based, interdisciplinary operating room team training at the point of care. Surgery. 2009;145(2):138–46.

    PubMed  Google Scholar 

  99. Paige JT, Kozmenko V, Yang T, et al. High fidelity, simulation-based training at the point-of-care improves teamwork in the operating room. J Am Coll Surg. 2008;207(3):S87–8.

    Google Scholar 

  100. Beaubien JM, Baker DP. The use of simulation for training teamwork skills in health care: how low can you go? Qual Saf Health Care. 2004;13 Suppl 1:i51–6.

    PubMed  Google Scholar 

  101. Wilson KA, Burke CS, Priest HA, Salas E. Promoting health care safety through training high reliability teams. Qual Saf Health Care. 2005;14(4):303–9.

    CAS  PubMed  Google Scholar 

  102. Salas E, DiazGranados D, Weaver SJ, King H. Does team training work? Principles for health care. Acad Emerg Med. 2008;15(11):1002–9.

    PubMed  Google Scholar 

  103. ACS/APDS surgical skills curriculum for residents: phase III, team-based skills. http://elearning.facs.org/course/view.php?id=10. Accessed 10 Jan 2012.

  104. Mishra A, Catchpole K, McCulloch P. The Oxford NOTECHS System: reliability and validity of a tool for measuring teamwork behaviour in the operating theatre. Qual Saf Health Care. 2009;18(2):104–8.

    CAS  PubMed  Google Scholar 

  105. Sevdalis N, Davis R, Koutantji M, Undre S, Darzi A, Vincent CA. Reliability of a revised NOTECHS scale for use in surgical teams. Am J Surg. 2008;196(2):184–90.

    PubMed  Google Scholar 

  106. Hull L, Arora S, Kassab E, Kneebone R, Sevdalis N. Observational teamwork assessment for surgery: content validation and tool refinement. J Am Coll Surg. 2011;212(2):234–243.e231–235.

    PubMed  Google Scholar 

  107. Sachdeva AK. Acquiring skills in new procedures and technology: the challenge and the opportunity. Arch Surg. 2005;140(4):387–9.

    PubMed  Google Scholar 

  108. Sachdeva AK, Pellegrini CA, Johnson KA. Support for simulation-based surgical education through American College of Surgeons – accredited education institutes. World J Surg. 2008;32(2):196–207.

    PubMed  Google Scholar 

  109. Sachdeva AK. Credentialing of surgical skills centers. Surgeon. 2011;9 Suppl 1:S19–20.

    PubMed  Google Scholar 

  110. Sachdeva AK. Establishment of American College of Surgeons-accredited Education Institutes: the dawn of a new era in surgical education and training. J Surg Educ. 2010;67(4):249–50.

    PubMed  Google Scholar 

  111. Stefanidis D, Arora S, Parrack DM, et al. Research priorities in surgical simulation for the 21st century. Am J Surg. 2012;203(1):49–53.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Stefanidis MD, PhD, FACS, FASMBS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stefanidis, D., Colavita, P.D. (2013). Simulation in General Surgery. In: Levine, A.I., DeMaria, S., Schwartz, A.D., Sim, A.J. (eds) The Comprehensive Textbook of Healthcare Simulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5993-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5993-4_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5992-7

  • Online ISBN: 978-1-4614-5993-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics