Skip to main content

Computer and Web Based Simulators

  • Chapter
  • First Online:
The Comprehensive Textbook of Healthcare Simulation

Abstract

There has been tremendous growth in the field of screen-based simulation over the past 20 years, corresponding with advances in computer technology and a need for fresh approaches to the growing problem of how to best develop and maintain a skilled health-care workforce amid budgetary constraints, duty-hour restrictions, and ongoing scrutiny of the safety and reliability of patient-care practices. While screen-based simulators are designed to recreate only limited aspects of the physical environment, published studies indicate that those meeting contemporary technical standards achieve a level of fidelity sufficient to impart procedural knowledge better than traditional textbook or paper-based methods and possibly as well as mannequin simulation. Moreover, the unparalleled reliability and throughput capacity of screen-based simulators make them highly promising tools for assessing and tracking cognitive performance for research or administrative purposes. The recent emergence of web-enabled simulators will make screen-based simulations easier for learners to access, easier for institutions to install, and easier to revise through downloadable updates. The Internet also opens up a host of potential new directions for screen-based simulation, including a capacity to support multiple participants who manage a simulated scenario as a team, in a real-time, networked environment. Going forward, screen-based simulation stands to play a major role in research designed to identify performance deficiencies that can be translated into opportunities for targeted curricular and care process improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Historical facts, dates, places, numbers. Society for Simulation in Healthcare. 2008. http://www.ssih.org/public/ssh_content. Accessed 30 Apr 2008.

  2. Weinstock PH, Kappus LJ, Kleinman ME, Grenier B, Hickey P, Burns JP. Toward a new paradigm in hospital-based pediatric education: the development of an onsite simulator program. Pediatr Crit Care Med. 2005;6:635–41.

    Article  PubMed  Google Scholar 

  3. Nishisaki A, Hales R, Biagas K, et al. A multi-institutional high-fidelity simulation “boot camp” orientation and training program for first year pediatric critical care fellows. Pediatr Crit Care Med. 2009;10:157–62.

    Article  PubMed  Google Scholar 

  4. Weinstock PH, Kappus LJ, Garden A, Burns JP. Simulation at the point of care: reduced-cost, in situ training via a mobile cart. Pediatr Crit Care Med. 2009;10:176–81.

    Article  PubMed  Google Scholar 

  5. Calhoun AW, Boone MC, Peterson EB, Boland KA, Montgomery VL. Integrated in-situ simulation using redirected faculty educational time to minimize costs: a feasibility study. Simul Healthc. 2011;6(6):337–44.

    Article  PubMed  Google Scholar 

  6. Entwisle G, Entwisle DR. The use of a digital computer as a teaching machine. J Med Educ. 1963;38:803–12.

    CAS  PubMed  Google Scholar 

  7. Schwid HA. A flight simulator for general anesthesia training. Comput Biomed Res. 1987;20:64–75.

    Article  CAS  PubMed  Google Scholar 

  8. Taekman JM, Shelley K. Virtual environments in healthcare: immersion, disruption, and flow. Int Anesthesiol Clin. 2010;48:101–21.

    Article  PubMed  Google Scholar 

  9. Schwid HA, Souter K. Cost-effectiveness of screen-based simulation for anesthesiology residents: 18 year experience. In: American Society of Anesthesiologists annual meeting, New Orleans, 2009.

    Google Scholar 

  10. Schwid HA, O’Donnell D. Educational malignant hyperthermia simulator. J Clin Monit. 1992;8:201–8.

    Article  CAS  PubMed  Google Scholar 

  11. Schwid HA, O’Donnell D. The anesthesia simulator consultant: simulation plus expert system. Anesthesiol Rev. 1993;20:185–9.

    CAS  PubMed  Google Scholar 

  12. Schwid HA. Components of a successful medical simulation program. Simulation Gaming. 2001;32:240–9.

    Article  Google Scholar 

  13. Schwid HA, O’Donnell D. The anesthesia simulator-recorder: a device to train and evaluate anesthesiologists’ responses to critical incidents. Anesthesiology. 1990;72:191–7.

    Article  CAS  PubMed  Google Scholar 

  14. Smothers V, Greene P, Ellaway R, Detmer DE. Sharing innovation: the case for technology standards in health professions education. Med Teach. 2008;30:150–4.

    Article  PubMed  Google Scholar 

  15. Posel N, Fleiszer D, Shore BM. 12 tips: guidelines for authoring virtual patient cases. Med Teach. 2009;31:701–8.

    Article  PubMed  Google Scholar 

  16. Triola MM, Campion N, McGee JB, Albright S, Greene P, Smothers V, Ellaway R. An XML standard for virtual patients: exchanging case-based simulations in medical education. AMIA Annu Symp Proc. 2007:741–5.

    Google Scholar 

  17. Schwid HA. Open-source shared case library. Stud Health Technol Inform. 2008;132:442–45.

    Google Scholar 

  18. Schwid HA. Anesthesia Simulator-Case 5-Anaphylactic reaction. MedEdPORTAL 2009. Available from www.aamc.org/mededportal. (ID=1711). Accessed on 2 Nov 2011.

  19. Stross JK. Maintaining competency in advanced cardiac life support skills. JAMA. 1983;249:3339–41.

    Article  CAS  PubMed  Google Scholar 

  20. Curry L, Gass D. Effects of training in cardiopulmonary resuscitation on competence and patient outcome. Can Med Assoc J. 1987;137:491–6.

    CAS  Google Scholar 

  21. Gass DA, Curry L. Physicians’ and nurses’ retention of knowledge and skill after training in cardiopulmonary resuscitation. Can Med Assoc J. 1983;128:550–1.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Lowenstein SR, Hansbrough JF, Libby LS, Hill DM, Mountain RD, Scoggin CH. Cardiopulmonary resuscitation by medical and surgical house-officers. Lancet. 1981;2:679–81.

    Article  CAS  PubMed  Google Scholar 

  23. Schwid HA, Rooke GA. ACLS Simulator. Issaquah: Copyright Anesoft Corporation; 1992.

    Google Scholar 

  24. Field JM, Hazinski MF, Sayre MR, et al. Part 1: executive summary: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122:S640–56.

    Article  PubMed  Google Scholar 

  25. HeartCode® ACLS. Copyright Laerdal Corporation, Stavanger Norway, 2010.

    Google Scholar 

  26. Schwid HA, Ventre KM. PALS Simulator. Copyright Anesoft Corporation, Issaquah, 2006, 2011.

    Google Scholar 

  27. Kleinman ME, Chameides L, Schexnayder SM, et al. Part 14: pediatric advanced life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122:S876–908.

    Article  PubMed  Google Scholar 

  28. Ventre KM, Collingridge DS, DeCarlo D. End-user evaluations of a personal computer-based pediatric advanced life support simulator. Simul Healthc. 2011;6:134–42.

    Article  PubMed  Google Scholar 

  29. Ralston ME, Zaritsky AL. New opportunity to improve pediatric emergency preparedness: pediatric emergency assessment, recognition, and stabilization course. Pediatrics. 2009;123:578–80.

    Article  PubMed  Google Scholar 

  30. Schwid HA. Anesthesia simulators – technology and applications. Isr Med Assoc J. 2000;2:949–53.

    CAS  PubMed  Google Scholar 

  31. Medina LS, Racadio JM, Schwid HA. Computers in radiology. The sedation, analgesia, and contrast media computerized simulator: a new approach to train and evaluate radiologists’ responses to critical incidents. Pediatr Radiol. 2000;30:299–305.

    Article  CAS  PubMed  Google Scholar 

  32. Schwid HA, Gustin A. Critical Care Simulator. Issaquah: Copyright Anesoft Corporation; 2008.

    Google Scholar 

  33. Schwid HA, Bennett T. Pediatrics Simulator. Issaquah: Copyright Anesoft Corporation; 2008.

    Google Scholar 

  34. Schwid HA, Eastwood K, Schreiber JR. Obstetrics Simulator. Issaquah: Copyright Anesoft Corporation; 2008.

    Google Scholar 

  35. Schwid HA, Jackson C, Strandjord TP. Neonatal Simulator. Issaquah: Copyright Anesoft Corporation; 2006.

    Google Scholar 

  36. Schwid HA, Duchin JS, Brennan JK, Taneda K, Boedeker BH, Ziv A, et al. Bioterrorism Simulator. Issaquah: Copyright Anesoft Corporation; 2002.

    Google Scholar 

  37. LeFlore J, Thomas PE, Zielke MA, Buus-Frank ME, McFadden BE, Sansoucie DA. Educating neonatal nurse practitioners in the 21st century. J Perinat Neonatal Nurs. 2011;25:200–5.

    Article  PubMed  Google Scholar 

  38. LeFlore J, Thomas P, McKenzie L, Zielke M. Can a complex interactive virtual ventilator help to save babies’ lives: an educational innovation for neonatal nurse practitioner students [abstract]. Sim Healthc. 2010;5:A106.

    Google Scholar 

  39. Lampotang S. Virtual anesthesia machine. Copyright University of Florida. 2000. http://vam.anest.ufl.edu/simulations/configurablevam.php. Accessed on 3 Nov 2011.

  40. Caplan RA, Vistica MF, Posner KL, Cheney FW. Adverse anesthetic outcomes arising from gas delivery equipment: a closed claims analysis. Anesthesiology. 1997;87:741–8.

    Article  CAS  PubMed  Google Scholar 

  41. Fischler IS, Kaschub CE, Lizdas DE, Lampotang S. Understanding of anesthesia machine function is enhanced with a transparent reality simulation. Simul Healthc. 2008;3:26–32.

    Article  PubMed  Google Scholar 

  42. Conradi E, Kavia S, Burden D, Rice A, Woodham L, Beaumont C, et al. Virtual patients in a virtual world: training paramedic students for practice. Med Teach. 2009;31:713–20.

    Article  PubMed  Google Scholar 

  43. Taekman JM, Segall N, Hobbs G, et al. 3Di Teams: healthcare team training in a virtual environment. Anesthesiology. 2007;107:A2145.

    Google Scholar 

  44. Cicarelli DD, Coelho RB, Bensenor FE, Vieira JE. Importance of critical events training for anesthesiology residents: experience with computer simulator. Rev Bras Anestesiol. 2005;55:151–7.

    Article  PubMed  Google Scholar 

  45. Biese KJ, Moro-Sutherland D, Furberg RD, et al. Using screen-based simulation to improve performance during pediatric resuscitation. Acad Emerg Med. 2009;16 Suppl 2:S71–5.

    Article  PubMed  Google Scholar 

  46. Tan GM, Ti LK, Tan K, Lee T. A comparison of screen-based simulation and conventional lectures for undergraduate teaching of crisis management. Anaesth Intensive Care. 2008;36:565–9.

    PubMed  Google Scholar 

  47. Schwid HA, Rooke GA, Ross BK, Sivarajan M. Use of a computerized advanced cardiac life support simulator improves retention of advanced cardiac life support guidelines better than a textbook review. Crit Care Med. 1999;27:821–4.

    Article  CAS  PubMed  Google Scholar 

  48. Schwid HA, Rooke GA, Michalowski P, Ross BK. Screen-based anesthesia simulation with debriefing improves performance in a mannequin-based anesthesia simulator. Teach Learn Med. 2001;13:92–6.

    Article  CAS  PubMed  Google Scholar 

  49. Bonnetain E, Boucheix JM, Hamet M, Freysz M. Benefits of computer screen-based simulation in learning cardiac arrest procedures. Med Educ. 2010;44:716–22.

    Article  PubMed  Google Scholar 

  50. Nyssen AS, Larbuisson R, Janssens M, Pendeville P, Mayne A. A comparison of the training value of two types of anesthesia simulators: computer screen-based and mannequin-based simulators. Anesth Analg. 2002;94:1560–5.

    PubMed  Google Scholar 

  51. Owen H, Mugford B, Follows V, Plummer JL. Comparison of three simulation-based training methods for management of medical emergencies. Resuscitation. 2006;71:204–11.

    Article  PubMed  Google Scholar 

  52. Schwid HA, O’Donnell D. Anesthesiologists’ management of simulated critical incidents. Anesthesiology. 1992;76:495–501.

    Article  CAS  PubMed  Google Scholar 

  53. DeAnda A, Gaba DM. Role of experience in the response to simulated critical incidents. Anesth Analg. 1991;72:308–15.

    Article  CAS  PubMed  Google Scholar 

  54. Gaba DM, DeAnda A. The response of anesthesia trainees to simulated critical incidents. Anesth Analg. 1989;68:444–51.

    Article  CAS  PubMed  Google Scholar 

  55. Ventre KM, Collingridge DS, DeCarlo D, Schwid HA. Performance of a consensus scoring algorithm for assessing pediatric advanced life support competency using a computer screen-based simulator. Pediatr Crit Care Med. 2009;10:623–35.

    Article  PubMed  Google Scholar 

  56. Hunt EA, Walker AR, Shaffner DH, Miller MR, Pronovost PJ. Simulation of in-hospital pediatric medical emergencies and cardiopulmonary arrests: highlighting the importance of the first 5 minutes. Pediatrics. 2008;121:e34–43.

    Article  PubMed  Google Scholar 

  57. Shilkofski NA, Nelson KL, Hunt EA. Recognition and treatment of unstable supraventricular tachycardia by pediatric residents in a simulation scenario. Sim Healthc. 2008;3:4–9.

    Article  Google Scholar 

  58. Dhara VR, Dhara R. The Union Carbide disaster in Bhopal: a review of health effects. Arch Environ Health. 2002;57:391–404.

    Article  PubMed  Google Scholar 

  59. Dhara VR, Gassert TH. The Bhopal syndrome: persistent questions about acute toxicity and management of gas victims. Int J Occup Environ Health. 2002;8:380–6.

    Article  PubMed  Google Scholar 

  60. Okumura T, Suzuki K, Fukuda A, et al. The Tokyo subway sarin attack: disaster management, part 1: community emergency response. Acad Emerg Med. 1998;5:613–7.

    Article  CAS  PubMed  Google Scholar 

  61. Morita H, Yanagisawa N, Nakajima T, et al. Sarin poisoning in Matsumoto, Japan. Lancet. 1995;346:290–3.

    Article  CAS  PubMed  Google Scholar 

  62. Nozaki H, Hori S, Shinozawa Y, et al. Secondary exposure of medical staff to sarin vapor in the emergency room. Intensive Care Med. 1995;21:1032–5.

    Article  CAS  PubMed  Google Scholar 

  63. Subbarao I, Johnson C, Bond WF, et al. Symptom-based, algorithmic approach for handling the initial encounter with victims of a potential terrorist attack. Prehosp Disaster Med. 2005;20:301–8.

    PubMed  Google Scholar 

  64. Bond WF, Subbarao I, Schwid HA, Bair AE, Johnson C. Using screen-based computer simulation to develop and test a civilian, symptom-based terrorism triage algorithm. International Trauma Care (ITACCS). 2006;16:19–25.

    Google Scholar 

  65. Michels P, Gravenstein D, Westenskow DR. An integrated graphic data display improves detection and identification of critical events during anesthesia. J Clin Monit. 1997;13:249–59.

    Article  CAS  PubMed  Google Scholar 

  66. Smith NT, Davidson TM. BODY Simulation. San Clemente: Copyright Advanced Simulation Corporation; 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Ventre MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ventre, K.M., Schwid, H.A. (2013). Computer and Web Based Simulators. In: Levine, A.I., DeMaria, S., Schwartz, A.D., Sim, A.J. (eds) The Comprehensive Textbook of Healthcare Simulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5993-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5993-4_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5992-7

  • Online ISBN: 978-1-4614-5993-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics