Abstract

Hematopoietic cells, or hemopoietic cells, represent bone marrow-derived cell types that circulate in blood (including mature cell types and their precursors). Hematopoietic cells are categorized into myeloid cells (basophils, eosinophils, neutrophils, erythrocytes, thrombocytes, monocytes and macrophages, and mastocytes) and lymphoid cells (Blymphocytes, various types of Tlymphocytes, which are the only hematopoietic cells that can be generated elsewhere than in the bone marrow, and natural killer [NK] cells, that are cytotoxic lymphocytes also called large granular lymphocytes).

Keywords

Zinc Migration Lymphoma Tyrosine Leukemia 

References

  1. 37.
    Lajtha LG (1979) Stem cell concepts. Differentiation 14:23–34CrossRefGoogle Scholar
  2. 38.
    Szabo E, Rampalli S, Risueño RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526ADSCrossRefGoogle Scholar
  3. 39.
    Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81:2844-2853Google Scholar
  4. 40.
    Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545ADSCrossRefGoogle Scholar
  5. 41.
    Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proceedings of the National Academy of Sciences of the United States of America 107:5465–5470ADSCrossRefGoogle Scholar
  6. 42.
    Nakada D, Saunders TL, SJ Morrison (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468:653–658ADSCrossRefGoogle Scholar
  7. 43.
    Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park PJ, OS Shirihai, Scadden DT, Bardeesy N (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468:659–666ADSCrossRefGoogle Scholar
  8. 44.
    Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, Fletcher-Sananikone E, Colla S, Wang YA, Chin L, DePinho RA (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468:701–704ADSCrossRefGoogle Scholar
  9. 45.
    Taniguchi Ishikawa E, Gonzalez-Nieto D, Ghiaur G, Dunn SK, Ficker AM, Murali B, Madhu M, Gutstein DE, Fishman GI, Barrio LC, Cancelas JA (2012) Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America 109:9071–9076ADSCrossRefGoogle Scholar
  10. 46.
    Sirin O, Lukov GL, Mao R, Conneely OM, Goodell MA (2010) The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells. Nature – Cell Biology 12:1213–1219Google Scholar
  11. 47.
    Dingli D, Pacheco JM (2006) Allometric scaling of the active hematopoietic stem cell pool across mammals. PLoS ONE 1: e2ADSCrossRefGoogle Scholar
  12. 48.
    Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121CrossRefGoogle Scholar
  13. 49.
    Eilken HM, Nishikawa SI, Schroeder T (2009) Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457:896–900ADSCrossRefGoogle Scholar
  14. 50.
    Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457:892–895ADSCrossRefGoogle Scholar
  15. 51.
    Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464:112–115ADSCrossRefGoogle Scholar
  16. 52.
    Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–120ADSCrossRefGoogle Scholar
  17. 53.
    Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DYR, Traver D (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464:108–111ADSCrossRefGoogle Scholar
  18. 54.
    Semerad CL, Mercer EM, Inlay MA, Weissman IL, Murre C (2009) E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proceedings of the National Academy of Sciences of the United States of America 106:1930–1935ADSCrossRefGoogle Scholar
  19. 55.
    Ceredig R, Rolink AG, Brown G (2009) Models of haematopoiesis: seeing the wood for the trees. Nature Reviews – Immunology 9:293–300Google Scholar
  20. 56.
    Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nature Reviews – Immunology 6:93–106Google Scholar
  21. 57.
    Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nature Reviews – Immunology 8:290–301Google Scholar
  22. 58.
    North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, FitzGerald GA, Daley GQ, Orkin SH, Zon LI (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011ADSCrossRefGoogle Scholar
  23. 59.
    Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263ADSCrossRefGoogle Scholar
  24. 60.
    Adams GB, Scadden DT (2006) The hematopoietic stem cell in its place. Nature – Immunology 7:333–337Google Scholar
  25. 61.
    Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439:599–603ADSCrossRefGoogle Scholar
  26. 62.
    Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nature Reviews – Molecular Cell Biology 9:11–21Google Scholar
  27. 63.
    Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A, Lapidot T (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature – Medicine 12:657–664Google Scholar
  28. 64.
    Kobayashi H, Butler JM, O’Donnell R, Kobayashi M, Ding BS, Bonner B, Chiu VK, Nolan DJ, Shido K, Benjamin L, Rafii S (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nature – Cell Biology 12:1046–1056Google Scholar
  29. 65.
    Furness SG, McNagny K (2006) Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. Immunologic Research 34:13–32CrossRefGoogle Scholar
  30. 66.
    Nielsen JS, McNagny KM (2008) Novel functions of the CD34 family. Journal of Cell Science 121:3683–3692CrossRefGoogle Scholar
  31. 67.
    Miccio A, Wang Y, Hong W, Gregory GD, Wang H, Yu X, Choi JK, Shelat S, Tong W, Poncz M, Blobel GA (2010) NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO Journal 29:442–456CrossRefGoogle Scholar
  32. 68.
    Hueber SD, Weiller GF, Djordjevic MA, Frickey T (2010) Improving Hox protein classification across the major model organisms. PLoS ONE 5:e10820CrossRefGoogle Scholar
  33. 69.
    Li Z (2008) Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 453:306–313CrossRefGoogle Scholar
  34. 70.
    Kee BL (2009) E and ID proteins branch out. Nature Reviews – Immunology 9:175–184Google Scholar
  35. 71.
    Lcuyer E, Herblot S, Saint-Denis M, Martin R, Begley CG, Porcher C, Orkin SH, Hoang T (2002) The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. Blood 100:2430–2440CrossRefGoogle Scholar
  36. 72.
    Huang S, Brandt SJ (2000) mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Molecular and Cellular Biology 20:2248–2259CrossRefGoogle Scholar
  37. 73.
    Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457:887–891ADSCrossRefGoogle Scholar
  38. 74.
    Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch W, Yoder MC, García-Cardeña G, Daley GQ (2009) Biomechanical forces promote embryonic haematopoiesis. Nature 459:1131–1135ADSCrossRefGoogle Scholar
  39. 75.
    Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547ADSCrossRefGoogle Scholar
  40. 76.
    Stehling-Sun S, Dade J, Nutt SL, DeKoter RP, Camargo FD (2009) Regulation of lymphoid versus myeloid fate ’choice’ by the transcription factor Mef2c. Nature – Immunology 10:289–296Google Scholar
  41. 77.
    Thierfelder WE, van Deursen JM, Yamamoto K, Tripp RA, Sarawar SR, Carson RT, Sangster MY, Vignali DA, Doherty PC, Grosveld GC, Ihle JN (1996) Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382:171–174ADSCrossRefGoogle Scholar
  42. 78.
    Kaplan MH, Schindler U, Smiley ST, Grusby MJ (1996) Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4:313–319CrossRefGoogle Scholar
  43. 79.
    Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N, Kitaoka T, Fukada T, Hibi M, Hirano T (1996) A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO Journal 15:3651–3658Google Scholar
  44. 80.
    Gupta R, Hong D, Iborra F, Sarno S, Enver T (2007) Nov (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science 316:590–593ADSCrossRefGoogle Scholar
  45. 81.
    Yamazaki S, Iwama A, Takayanagi SI, Morita Y, Eto K, Ema H, Nakauchi H (2006) Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. The EMBO Journal 25:3515–3523CrossRefGoogle Scholar
  46. 82.
    Zhu J, Zhang Y, Joe GJ, Pompetti R, Emerson SG (2005) NF-Ya activates multiple hematopoietic stem cell (HSC) regulatory genes and promotes HSC self-renewal. Proceedings of the National Academy of Sciences of the United States of America 102:11728–11733ADSCrossRefGoogle Scholar
  47. 83.
    Gtz R, Wiese S, Takayama S, Camarero GC, Rossoll W, Schweizer U, Troppmair J, Jablonka S, Holtmann B, Reed JC, Rapp UR, Sendtner M (2005) Bag1 is essential for differentiation and survival of hematopoietic and neuronal cells. Nature – Neuroscience 8:1169–1178Google Scholar
  48. 84.
    Adams GB, Alley IR, Chung UI, Chabner KT, Jeanson NT, Celso CL, Marsters ES, Chen M, Weinstein LS, Lin CP, Kronenberg HM, Scadden DT (2009) Haematopoietic stem cells depend on Galphas-mediated signalling to engraft bone marrow. Nature 459:103–107ADSCrossRefGoogle Scholar
  49. 85.
    Kurzrock R (2003) Hematopoietic growth factors. In: Bast RC, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei E (eds) Cancer Medicine. BC Decker, Hamilton, Ontario, CanadaGoogle Scholar
  50. 86.
    Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, Yoon K, Cook JM, Willert K, Gaiano N, Reya T (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nature – Immunology 6:314–322Google Scholar
  51. 87.
    Avalos BR, Parker JM, Ware DA, Hunter MG, Sibert KA, Druker BJ (1997) Dissociation of the Jak kinase pathway from G-CSF receptor signaling in neutrophils. Experimental Hematology 25:160–168Google Scholar
  52. 88.
    Irandoust MI, Aarts LHJ, Roovers O, Gits J, Erkeland SJ, Touw IP (2007) Suppressor of cytokine signaling 3 controls lysosomal routing of G-CSF receptor. EMBO Journal 26:1782–1793CrossRefGoogle Scholar
  53. 89.
    Kishimoto S, Nakamura S, Hattori H, Nakamura SI, Oonuma F, Kanatani Y, Tanaka Y, Mori Y, Harada Y, Tagawa M, Ishihara M (2009) Human stem cell factor (SCF) is a heparin-binding cytokine. Journal of Biochemistry 145:275–278CrossRefGoogle Scholar
  54. 90.
    Himburg HA, Muramoto GG, Daher P, Meadows SK, Russell JL, Doan P, Chi JT, Salter AB, Lento WE, Reya T, Chao NJ, Chute JP (2010) Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nature – Medicine 16:475–482Google Scholar
  55. 91.
    Scott CS, Richards SJ, Roberts BE (1990) Patterns of membrane TcRαβ and TcRγδ chain expression by normal blood CD4 + CD8 − , CD4 − CD8 + , CD4 − CD8dim + and CD4 − CD8 − lymphocytes. Immunology 70:351–356Google Scholar
  56. 92.
    Ohta M, Greenberger JS, Anklesaria P, Bassols A, Massague J (1987) Two forms of transforming growth factor-β distinguished by multipotential haematopoietic progenitor cells. Nature 329:539–541ADSCrossRefGoogle Scholar
  57. 93.
    Kosaki K, Ando J, Korenaga R, Kurokawa T, Kamiya A (1998) Fluid shear stress increases the production of granulocyte-macrophage colony-stimulating factor by endothelial cells via mRNA stabilization. Circulation Research 82:794–802CrossRefGoogle Scholar
  58. 94.
    Lal A, Pan Y, Navarro F, Dykxhoorn DM, Moreau L, Meire E, Bentwich Z, Lieberman J, Chowdhury D (2009) MiR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nature – Structural and Molecular Biology 16:492–498Google Scholar
  59. 95.
    Sakata-Yanagimoto M, Nakagami-Yamaguchi E, Saito T, Kumano K, YasutomoK, Ogawa S, Kurokawa M, Chiba S (2008) Coordinated regulation of transcription factors through Notch2 is an important mediator of mast cell fate. Proceedings of the National Academy of Sciences of the United States of America 105:7839–7844ADSCrossRefGoogle Scholar
  60. 96.
    Chang KH, Chan-Ling T, McFarland EL, AfzalA, Pan H, Baxter LC, Shaw LC, Caballero S, Sengupta N, Calzi SL, Sullivan SM, Grant MB (2007) IGF binding protein-3 regulates hematopoietic stem cell and endothelial precursor cell function during vascular development. Proceedings of the National Academy of Sciences of the United States of America 104:10595–10600ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marc Thiriet
    • 1
  1. 1.Project-team INRIA-UPMC-CNRS REO Laboratoire Jacques-Louis Lions, CNRS UMR 7598Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations