Advertisement

Airway Surface Liquid and Respiratory Mucus

  • Marc Thiriet
Chapter
Part of the Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems book series (BBMCVS, volume 5)

Abstract

Mucosa is a lining involved in absorption and secretion of mucus, especially, among other materials. Mucosal surface comprises a wet epithelium, a structural barrier, covered by a protective mucous barrier. The mucus layer in airways is thin and mobile.

Keywords

Goblet Cell Ciliated Cell Mucus Layer Respiratory Epithelium Mucociliary Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1511.
    Evans SE, Xu Y, Tuvim MJ, Dickey BF (2010) Inducible innate resistance of lung epithelium to infection. Annual Review of Physiology 72:413–435CrossRefGoogle Scholar
  2. 1512.
    Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Annual Review of Physiology 70:431–457CrossRefGoogle Scholar
  3. 1513.
    Button B, Cai LH, Ehre C, Kesimer M, Hill DB, Sheehan JK, Boucher RC, Rubinstein M (2012) A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337:937–941ADSCrossRefGoogle Scholar
  4. 1514.
    Randell SH, Boucher RC (2006) Effective mucus clearance is essential for respiratory health. American Journal of Respiratory Cell and Molecular Biology 35:20–28CrossRefGoogle Scholar
  5. 1515.
    Sanderson MJ, Lansley AB, Dirksen ER (1992) Regulation of ciliary beat frequency in respiratory tract cells. Chest 101:69S–71SGoogle Scholar
  6. 1516.
    Flynn AN, Itani OA, Moninger TO, Welsh MJ (2009) Acute regulation of tight junction ion selectivity in human airway epithelia. Proceedings of the National Academy of Sciences of the United States of America 106:3591–3596ADSCrossRefGoogle Scholar
  7. 1517.
    Yeates DB, Pitt BR, Spektor DM, Karron GA, Albert RE (1981) Coordination of mucociliary transport in the human trachea and intrapulmonary airways. Journal of Applied Physiology – Respiratory, Environmental and Exercise Physiology 51:1057–1064Google Scholar
  8. 1518.
    Katz I, Zwas T, Baum GL, Aharonson E, Belfer B (1987) Ciliary beat frequency and mucociliary clearance. What is the relationship? Chest 92:491–493CrossRefGoogle Scholar
  9. 1519.
    Wanner A (1981) Alteration of tracheal mucociliary transport in airway disease: effect of pharmacologic agents. Chest 80:867-870Google Scholar
  10. 1520.
    Zahm JM, Milliot M, Bresin A, Coraux C, Birembaut P (2011) The effect of hyaluronan on airway mucus transport and airway epithelial barrier integrity: potential application to the cytoprotection of airway tissue. Matrix Biology 30:389–395CrossRefGoogle Scholar
  11. 1521.
    Wilson R, Alton E, Rutman A, Higgins P, Al Nakib W, Geddes DM, Tyrrell DA, Cole PJ (1987) Upper respiratory tract viral infection and mucociliary clearance. European Journal of Respiratory Diseases 70:272–279Google Scholar
  12. 1522.
    Parkhurst MR, Saltzman WM (1994) Leukocytes migrate through three-dimensional gels of midcycle cervical mucus. Cellular Immunology 156:77–94CrossRefGoogle Scholar
  13. 1523.
    Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA (2001) Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophysical Journal 81:1930–1937ADSCrossRefGoogle Scholar
  14. 1524.
    Saltzman WM, Radomsky ML, Whaley KJ, Cone RA (1994) Antibody diffusion in human cervical mucus. Biophysical Journal 66:508–515ADSCrossRefGoogle Scholar
  15. 1525.
    Dulfano MJ, Adler KB (1975) Physical properties of sputum VII. Rheologic properties and mucociliary transport. American Review of Respiratory Diseases 112:341–347Google Scholar
  16. 1526.
    Puchelle E, Girard F, Zahm JM (1976) Rh́ologie des sécrétions bronchitiques et transport muco-cilaire. Rheology of bronchial secretions and mucociliary transport. Bulletin Européen de Physiopathologie Respiratoire 12:771–779Google Scholar
  17. 1527.
    Giordano AM, Holsclaw D, Litt M (1978) Mucus rheology and mucociliary clearance: normal physiologic state. American Review of Respiratory Diseases 118:245–250Google Scholar
  18. 1528.
    Gelman RA, Meyer FA (1979) Mucociliary transference rate and mucus viscoelasticity. Dependence on dynamic storage and loss modulus. American Review of Respiratory Diseases 120:553–557Google Scholar
  19. 1529.
    Puchelle E, Zahm JM, Quemada D (1987) Rheological properties controlling mucociliary frequency and respiratory mucus transport. Biorheology 24:557–563Google Scholar
  20. 1530.
    Puchelle E, Zahm JM, Girard F, Bertrand A, Polu JM, Aug F, Sadoul P (1980) Mucociliary transport in vitro and in vivo. European Journal of Respiratory Diseases 61:254–264Google Scholar
  21. 1531.
    Marriott C (1990) Mucus and mucociliary clearance in the respiratory tract. Advanced Drug Delivery Reviews 5:5–19CrossRefGoogle Scholar
  22. 1532.
    Reynolds SD, Reynolds PR, Pryhuber GS, Finder JD, Stripp BR (2002) Secretoglobins SCGB3A1 and SCGB3A2 define secretory cell subsets in mouse and human airways. American Journal of Respiratory and Critical Care Medicine 166:1498–1509CrossRefGoogle Scholar
  23. 1533.
    Kim S, Shim JJ, Burgel PR, Ueki IF, Dao-Pick T, Tam DC, Nadel JA (2002) IL-13-induced Clara cell secretory protein expression in airway epithelium: role of EGFR signaling pathway. American Journal of Physiology – Lung Cellular and Molecular Physiology 283:L67–L75Google Scholar
  24. 1534.
    Evans CM, Williams OW, Tuvim MJ, Nigam R, Mixides GP, Blackburn MR, DeMayo FJ, Burns AR, Smith C, Reynolds SD, Stripp BR, Dickey BF (2004) Mucin is produced by clara cells in the proximal airways of antigen-challenged mice.Google Scholar
  25. 1535.
    Ehre C, Rossi AH, Abdullah LH, De Pestel K, Hill S, Olsen JC, Davis CW (2005) Barrier role of actin filaments in regulated mucin secretion from airway goblet cells. American Journal of Physiology – Cell Physiology 288:C46–C56Google Scholar
  26. 1536.
    Reid L (1960) Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax 15:132–141CrossRefGoogle Scholar
  27. 1537.
    Tos M (1966) Development of the tracheal glands in man. Number, density, structure, shape, and distribution of mucous glands elucidated by quantitative studies of whole mounts. Acta Pathologica and Microbiologica Scandinavica 68:1–130Google Scholar
  28. 1538.
    Wine JJ, Joo NS (2004) Submucosal glands and airway defense. Proceedings of the American Thoracic Society 1:47–53CrossRefGoogle Scholar
  29. 1539.
    Reader JR, Tepper JS, Schelegle ES, Aldrich MC, Putney LF, Pfeiffer JW, Hyde DM (2003) Pathogenesis of mucous cell metaplasia in a murine asthma model. American Journal of Pathology 162:2069–2078CrossRefGoogle Scholar
  30. 1540.
    Hayashi T, Ishii A, Nakai S, Hasegawa K (2004) Ultrastructure of goblet-cell metaplasia from Clara cell in the allergic asthmatic airway inflammation in a mouse model of asthma in vivo. Virchows Archiv 444:66–73CrossRefGoogle Scholar
  31. 1541.
    Chen Y, Zhao YH, Wu R (2001) Differential regulation of airway mucin gene expression and mucin secretion by extracellular nucleotide triphosphates. American Journal of Respiratory Cell and Molecular Biology 25:409–417Google Scholar
  32. 1542.
    Zhu Y, Ehre C, Abdullah LH, Sheehan JK, Roy M, Evans CM, Dickey BF, Davis CW (2008) Munc13-2 − / − baseline secretion defect reveals source of oligomeric mucins in mouse airways. Journal of Physiology 586:1977–1992CrossRefGoogle Scholar
  33. 1543.
    Spencer H, Leof D (1964) The innervation of the human lung. Journal of Anatomy 98:599–609Google Scholar
  34. 1544.
    Maggi CA, Giachetti A, Dey RD, Said SI (1995) Neuropeptides as regulators of airway function: vasoactive intestinal peptide and the tachykinins. Physiological Reviews 75:277–322Google Scholar
  35. 1545.
    Fahy JV, Dickey BF (2010) Airway mucus function and dysfunction. New England Journal of Medicine 363:2233–2247CrossRefGoogle Scholar
  36. 1546.
    Li Y, Martin LD, Spizz G, Adler KB (2001) MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro. Journal of Biological Chemistry 276:40982–40990CrossRefGoogle Scholar
  37. 1547.
    Koch H, Hofmann K, Brose N (2000) Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochemical Journal 349:247–253CrossRefGoogle Scholar
  38. 1548.
    Tarran R, Button B, Boucher RC (2006) Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annual Review of Physiology 68:543–561CrossRefGoogle Scholar
  39. 1549.
    Davis CW, Lazarowski ER (2008) Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling. Respiratory Physiology and Neurobiology 163:208–213CrossRefGoogle Scholar
  40. 1550.
    Ransford GA, Fregien N, Qiu F, Dahl G, Conner GE, Salathe M (2009) Pannexin 1 contributes to ATP release in airway epithelia. American Journal of Respiratory Cell and Molecular Biology 41:525–534CrossRefGoogle Scholar
  41. 1551.
    Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Letters 572:65–68CrossRefGoogle Scholar
  42. 1552.
    Locovei S, Wang J, Dahl G (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Letters 580:239–244CrossRefGoogle Scholar
  43. 1553.
    Lazarowski ER, Boucher RC (2009) Purinergic receptors in airway epithelia. Current Opinion in Pharmacology 9:262–267CrossRefGoogle Scholar
  44. 1554.
    Kreda SM, Okada SF, van Heusden CA, O’Neal W, Gabriel S, Abdullah L, Davis CW, Boucher RC, Lazarowski ER (2007) Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. Journal of Physiology 584:245–259CrossRefGoogle Scholar
  45. 1555.
    Okada SF, Zhang L, Kreda SM, Abdullah LH, Davis CW, Pickles RJ, Lazarowski ER, Boucher RC (2011) Coupled nucleotide and mucin hypersecretion from goblet-cell metaplastic human airway epithelium. American Journal of Respiratory Cell and Molecular Biology 45:253–260CrossRefGoogle Scholar
  46. 1556.
    Thornton DJ, Sheehan JK (2004) From mucins to mucus: toward a more coherent understanding of this essential barrier. Proceedings of the American Thoracic Society 1: 54–61CrossRefGoogle Scholar
  47. 1557.
    Lai SK, Wang Y-Y, Wirtz D, Hanes J (2009) Micro- and macrorheology of mucus. Advanced Drug Delivery Reviews 61:86–100CrossRefGoogle Scholar
  48. 1558.
    Sleigh MA, Blake JR, Liron N (1988) The propulsion of mucus by cilia. American Review of Respiratory Diseases 137:726–741Google Scholar
  49. 1559.
    McGuire JF (2002) Surfactant in the middle ear and eustachian tube: a review. International Journal of Pediatric Otorhinolaryngology 66:1–15CrossRefGoogle Scholar
  50. 1560.
    Baconnais S, Tirouvanziam R, Zahm JM, de Bentzmann S, Pault B, Balossier G, Puchelle E (1999) Ion composition and rheology of airway liquid from cystic fibrosis fetal tracheal xenografts. American Journal of Respiratory Cell and Molecular Biology 20:605–611Google Scholar
  51. 1561.
    Dawson M, Wirtz D, Hanes J (2003) Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. Journal of Biological Chemistry 278: 50393–50401CrossRefGoogle Scholar
  52. 1562.
    Girod S, Zahm JM, Plotkowski C, Beck G, Puchelle E (1992) Role of the physiochemical properties of mucus in the protection of the respiratory epithelium. European Respiratory Journal 5:477–487Google Scholar
  53. 1563.
    King M, Macklem PT (1977) Rheological properties of microliter quantities of normal mucus. Journal of Applied Physiology 42:797–802Google Scholar
  54. 1564.
    Galabert C, Jacquot J, Zahm JM, Puchelle E (1987) Relationships between the lipid content and the rheological properties of airway secretions in cystic fibrosis. Clinica Chimica Acta 164:139–149CrossRefGoogle Scholar
  55. 1565.
    App EM, Tomkiewicz RP, Hahn HL, Engler H, Vergin H, King M (1997) The effect of Tasuldine, a bronchosecretolytic agent, on mucus rheology and clearability and the interaction with acetylcholine in ferrets. Pulmonary Pharmacology and Therapeutics 10:271–276CrossRefGoogle Scholar
  56. 1566.
    Lai SK, Wang Y-Y, Cone R, Wirtz D, Hanes J (2009) Altering mucus rheology to “solidify” human mucus at the nanoscale. PLoS One 4: e4294ADSCrossRefGoogle Scholar
  57. 1567.
    King M (2006) Physiology of mucus clearance. Paediatric Respiratory Reviews 7:S212–S214CrossRefGoogle Scholar
  58. 1568.
    Foliguet B, Puchelle E (1986) Apical structure of human respiratory cilia. Bulletin Européen de Physio-Pathologie Respiratoire 22:43–47Google Scholar
  59. 1569.
    Shah AS, Farmen SL, Moninger TO, Businga TR, Andrews MP, Bugge K, Searby CC, Nishimura D, Brogden KA, Kline JN, Sheffield VC, Welsh MJ (2008) Loss of Bardet-Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia. Proceedings of the National Academy of Sciences of the United States of America 105:3380–3385ADSCrossRefGoogle Scholar
  60. 1570.
    Sarmah B, Winfrey VP, Olson GE, Appel B, Wente SR (2007) A role for the inositol kinase Ipk1 in ciliary beating and length maintenance. Proceedings of the National Academy of Sciences of the United States of America 104:19843–19848ADSCrossRefGoogle Scholar
  61. 1571.
    Spungin B, Silberberg A (1984) Stimulation of mucus secretion, ciliary activity and transport in frog palate epithelium. American Journal of Physiology – Cell Physiology 247:C299–C308Google Scholar
  62. 1572.
    Yager J, Chen TM, Dulfano MJ (1978) Frequency of ciliary beats of human respiratory epithelium. Chest 73:627–633CrossRefGoogle Scholar
  63. 1573.
    Rutland J, Griffin WM, Cole PJ (1982) Human ciliary beat frequency in epithelium from intrathoracic and extrathoracic airways. American Review of Respiratory Diseases 125:100–105Google Scholar
  64. 1574.
    Lindberg S, Runer T (1994) Method for in vivo measurement of mucociliary activity in the human nose. Annals of Otology, Rhinology and Laryngology 103:558–566Google Scholar
  65. 1575.
    Nuutinen J, Toskala ER, Saano V, Susanna J (1993) Ciliary beating frequency in chronic sinusitis. Archives of Otolaryngology – Head and Neck Surgery 119:645–647Google Scholar
  66. 1576.
    Salathe M (2007) Regulation of mammalian ciliary beating. Annual Review of Physiology 69:401–422CrossRefGoogle Scholar
  67. 1577.
    Tamm SL, Terasaki M (1994) Visualization of calcium transients controlling orientation of ciliary beat. Journal of Cell Biology 125:1127–1135CrossRefGoogle Scholar
  68. 1578.
    Sanderson MJ, Dirksen ER (1986) Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: implications for the regulation of mucociliary transport. Proceedings of the National Academy of Sciences of the United States of America 83:7302–7306ADSCrossRefGoogle Scholar
  69. 1579.
    Villaln M, Hinds TR, Verdugo P (1989) Stimulus response coupling in mammalian ciliated cells. Biophysical Journal 56:1255–1258ADSCrossRefGoogle Scholar
  70. 1580.
    Tamaoki J, Kondo M, Takizawa T (1989) Adenosine-mediated cAMP-dependent inhibition of ciliary activity in rabbit tracheal epithelium. American Review of Respiratory Diseases 139:441–445CrossRefGoogle Scholar
  71. 1581.
    Wang D, Sun Y, Zhang W, Huang P (2008) Apical adenosine regulates basolateral Ca2 + -activated potassium channels in human airway Calu-3 epithelial cells. American Journal of Physiology – Cell Physiology 294:C1443–C1453Google Scholar
  72. 1582.
    Kondo M, Tamaoki J, Takizawa T (1990) Neutral endopeptidase inhibitor potentiates the tachykinin-induced increase in ciliary beat frequency in rabbit trachea. American Review of Respiratory Diseases 142:403–406Google Scholar
  73. 1583.
    Kobayashi K, Tamaoki J, Sakai N, Kanemura T, Horii S, Takizawa T (1990) Angiotensin II stimulates airway ciliary motility in rabbit cultured tracheal epithelium. Acta Physiologica Scandinavica 138:497–502CrossRefGoogle Scholar
  74. 1584.
    Mwimbi XK, Muimo R, Green MW, Mehta A (2003) Making human nasal cilia beat in the cold: a real time assay for cell signalling. Cellular Signalling 15:395–402CrossRefGoogle Scholar
  75. 1585.
    Alberty J, August C, Stoll W, Rudack C (2004) The effect of endogenous nitric oxide on cholinergic ciliary stimulation of human nasal mucosa. Laryngoscope 114:1642-1647CrossRefGoogle Scholar
  76. 1586.
    Sisson JH, Pavlik JA, Wyatt TA (2009) Alcohol stimulates ciliary motility of isolated airway axonemes through a nitric oxide, cyclase, and cyclic nucleotide-dependent kinase mechanism. Alcoholism, Clinical and Experimental Research 33:610–616CrossRefGoogle Scholar
  77. 1587.
    Kim CS, Rodriguez CR, Eldridge MA, Sackner MA (1986) Criteria for mucus transport in the airways by two-phase gas-liquid flow mechanism. Journal of Applied Physiology 60:901–907Google Scholar
  78. 1588.
    Kim CS, Greene MA, Sankaran S, Sackner MA (1986) Mucus transport in the airways by two-phase gas-liquid flow mechanism: continuous flow model. Journal of Applied Physiology 60:908–917Google Scholar
  79. 1589.
    Yoshitsugu M, Hanamure Y, Furuta S, Deguchi K, Ueno K, Rautiainen M (1994) Ciliary motility and surface morphology of cultured human respiratory epithelial cells during ciliogenesis. Biology of the Cell 82:211–216CrossRefGoogle Scholar
  80. 1590.
    Wilson CW, Nguyen CT, Chen MH, Yang JH, Gacayan R, Huang J, Chen JN, Chuang PT (2009) Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis. Nature 459:98–102ADSCrossRefGoogle Scholar
  81. 1591.
    Sorokin SP (1968) Reconstruction of centriole formation and ciliogenesis in mammalian lungs. Journal of Cell Science 3:207–230Google Scholar
  82. 1592.
    Enault S, Lombardi D, Poncet P, Thiriet M (2010) Mucus dynamics subject to air and wall motion, ESAIM: Proceedings 30:125–141CrossRefGoogle Scholar
  83. 1593.
    Chatelin R, Poncet P, Didier A, Murris-Espin M, Anne-Archard D, Thiriet M (2012) Mucus and ciliated cells of the human lung: splitting strategies for particle methods and 3D Stokes flows. International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Particle Methods in Fluid Mechanics, October 15–17, 2012, Lyngby, DenmarkGoogle Scholar
  84. 1594.
    Chatelin R, Poncet P, Tokman M (2010) Computational aspects of mucus propulsion by ciliated epithelium. Proceedings of the 2nd European Conference on Microfluidics - Microfluidics 2010 - Toulouse, December 8-10, 2010 (paper μFLU10-107)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marc Thiriet
    • 1
  1. 1.Project-team INRIA-UPMC-CNRS REO Laboratoire Jacques-Louis Lions, CNRS UMR 7598Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations