Advertisement

Descriptive, Environmental and Genetic Epidemiology of Nasopharyngeal Carcinoma

  • Bing-Jian Feng
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

Nasopharyngeal carcinoma (NPC) is a rare tumor in most countries but is more prevalent in Southeast Asia, North Africa and Artic regions. Multiple factors participate in the etiology of NPC including Epstein-Barr virus (EBV) activation, genetic susceptibility and exposure to environmental carcinogens. Specifically, risk factors consistently associated with NPC in endemic areas include early childhood salted fish consumption, preserved foods consumption, lack of fresh fruit or leafy vegetables intake, prior chronic respiratory tract conditions, and exposure to cooking fumes. EBV may act as a tumor promoting agent rather than an initiator in the progress of NPC carcinogenesis. Genetic susceptibility to NPC is largely mediated by the human leukocyte antigen (HLA) class I genes region, although it is not clear whether HLA is causative.

Keywords

Human Leukocyte Antigen Nasopharyngeal Carcinoma Human Leukocyte Antigen Allele Salted Fish Human Leukocyte Antigen Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jeannel D, Bouvier G, Hubbert A. Nasopharyngeal Carcinoma: An Epidemiological Approach to Carcinogenesis. Cancer Surveys 1999; 33:125–155.Google Scholar
  2. 2.
    Curado MP, Edwards B, Shin HR et al. Cancer Incidence in Five Continents Vol. IX. Vol IX. Lyon, France: International Agency for Research on Cancer 2007.Google Scholar
  3. 3.
    Kelly J, Lanier A, Santos M et al. Cancer among the circumpolar Inuit, 1989–2003. IL Patterns and trends. Int J Circumpolar Health 2008; 67(5):408–420.PubMedGoogle Scholar
  4. 4.
    Nandakumar A, Gupta PC, Gangadharan P et al. Geographic pathology revisited: development of an atlas of cancer in India. Int J Cancer 2005; 116(5):740–754.PubMedCrossRefGoogle Scholar
  5. 5.
    Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol 2002; 12(6):421–429.PubMedCrossRefGoogle Scholar
  6. 6.
    Devi BC, Pisani P, Tang TS, Parkin DM. High incidence of nasopharyngeal carcinoma in native people of Sarawak, Borneo Island. Cancer Epidemiol Biomarkers Prev 2004; 13(3):482–486.PubMedGoogle Scholar
  7. 7.
    Bray F, Haugen M, Moger TA et al. Age-incidence curves of nasopharyngeal carcinoma worldwide: bimodality in low-risk populations and aetiologic implications. Cancer Epidemiol Biomarkers Prev 2008; 17(9):2356–2365.PubMedCrossRefGoogle Scholar
  8. 8.
    Ellouz R, Cammoun M, Attia RB et al. Nasopharyngeal carcinoma in children and adolescents in Tunisia: clinical aspects and the paraneoplastic syndrome. IARC Sci Publ 1978; (20): 115–129.PubMedGoogle Scholar
  9. 9.
    Barnes L, Eveson JW, Reichart P et al. Pathology and Genetics of Head and Neck Tumours. Lyon: IARC Press; 2005.Google Scholar
  10. 10.
    Zong YS, Zhang RF, He SY et al. Histopathologic types and incidence of malignant nasopharyngeal tumors in Zhongshan County. Chin Med J (Engl) 1983; 96(7):511–516.Google Scholar
  11. 11.
    Feng BJ, Khyatti M, Ben-Ayoub W et al. Cannabis, tobacco and domestic fumes intake are associated with nasopharyngeal carcinoma in North Africa. Br J Cancer 2009; 101(7): 1207–1212.PubMedCrossRefGoogle Scholar
  12. 12.
    Friborg JT, Melbye M. Cancer patterns in Inuit populations. Lancet Oncol 2008; 9(9):892–900.PubMedCrossRefGoogle Scholar
  13. 13.
    Ou SH, Zell JA, Ziogas A et al. Epidemiology of nasopharyngeal carcinoma in the United States: improved survival of Chinese patients within the keratinizing squamous cell carcinoma histology. Ann Oncol 2007; 18(l):29–35.PubMedGoogle Scholar
  14. 14.
    Shanmugaratnam K, Sobin LH. The World Health Organization histological classification of tumours of the upper respiratory tract and ear. A commentary on the second edition. Cancer 1993; 71(8):2689–2697.PubMedCrossRefGoogle Scholar
  15. 15.
    Nicholls JM, Agathanggelou A, Fung K et al. The association of squamous cell carcinomas of the nasopharynx with Epstein-Barr virus shows geographical variation reminiscent of Burkitt’s lymphoma. JPathol 1997; 183(2):164–168.CrossRefGoogle Scholar
  16. 16.
    Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2006; 15(10): 1765–1777.PubMedCrossRefGoogle Scholar
  17. 17.
    Sun LM, Epplein M, Li CI et al. Trends in the incidence rates of nasopharyngeal carcinoma among Chinese Americans living in Los Angeles County and the San Francisco metropolitan area, 1992–2002. Am J Epidemiol 2005; 162(12): 1174–1178.PubMedCrossRefGoogle Scholar
  18. 18.
    Jia WH, Huang QH, Liao J et al. Trends in incidence and mortality of nasopharyngeal carcinoma over a 20–25 year period (1978/1983–2002) in Sihui and Cangwu counties in southern China. BMC Cancer 2006; 6:178.PubMedCrossRefGoogle Scholar
  19. 19.
    Tse LA, Yu IT, Mang OW et al. Incidence rate trends of histological subtypes of nasopharyngeal carcinoma in Hong Kong. Br J Cancer 2006; 95(9): 1269–1273.PubMedCrossRefGoogle Scholar
  20. 20.
    Luo J, Chia KS, Chia SE et al. Secular trends of nasopharyngeal carcinoma incidence in Singapore, Hong Kong and Los Angeles Chinese populations, 1973–1997. Eur J Epidemiol 2007; 22(8):513–521.PubMedCrossRefGoogle Scholar
  21. 21.
    Boysen T, Friborg J, Andersen A et al. The Inuit cancer pattern–the influence of migration. Int J Cancer 2008; 122(11):2568–2572.PubMedCrossRefGoogle Scholar
  22. 22.
    Tao Q, Young LS, Woodman CB et al. Epstein-Barr virus (EBV) and its associated human cancers—genetics, epigenetics, pathobiology and novel therapeutics. Front Biosci 2006; 11:2672–2713.PubMedCrossRefGoogle Scholar
  23. 23.
    Sriamporn S, Vatanasapt V, Pisani P, Yongchaiyudha S, Rungpitarangsri V. Environmental risk factors for nasopharyngeal carcinoma: a case-control study in northeastern Thailand. Cancer Epidemiol Biomarkers Prev 1992; 1(5):345–348.PubMedGoogle Scholar
  24. 24.
    IARC. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC Monogr Eval Carcinog Risks Hum 1993; 56.Google Scholar
  25. 25.
    Lanier A, Bender T, Talbot M et al. Nasopharyngeal carcinoma in Alaskan Eskimos Indians, and Aleuts: a review of cases and study of Epstein-Barr virus, HLA, and environmental risk factors. Cancer 1980; 46(9):2100–2106.PubMedCrossRefGoogle Scholar
  26. 26.
    Gallicchio L, Matanoski G, Tao XG et al. Adulthood consumption of preserved and nonpreserved vegetables and the risk of nasopharyngeal carcinoma: a systematic review. Int J Cancer 2006; 119(5): 1125–1135.PubMedCrossRefGoogle Scholar
  27. 27.
    Jeannel D, Hubert A, de Vathaire F et al. Diet, living conditions and nasopharyngeal carcinoma in Tunisia—a case-control study. Int J Cancer 1990; 46(3):421–425.PubMedCrossRefGoogle Scholar
  28. 28.
    Feng BJ, Jalbout M, Ayoub WB et al. Dietary risk factors for nasopharyngeal carcinoma in Maghrebian countries. Int J Cancer 2007; 121(7): 1550–1555.PubMedCrossRefGoogle Scholar
  29. 29.
    Armstrong RW, Imrey PB, Lye MS et al. Nasopharyngeal carcinoma in Malaysian Chinese: salted fish and other dietary exposures. Int J Cancer 1998; 77(2):228–235.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen DL, Huang TB. A case-control study of risk factors of nasopharyngeal carcinoma. Cancer Lett 1997; 117(l):17–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Yu MC, Huang TB, Henderson BE. Diet and nasopharyngeal carcinoma: a case-control study in Guangzhou, China. Int J Cancer 1989; 43(6): 1077–1082.PubMedCrossRefGoogle Scholar
  32. 32.
    Yu MC, Mo CC, Chong WX et al. Preserved foods and nasopharyngeal carcinoma: a case-control study in Guangxi, China. Cancer Res 1988; 48(7): 1954–1959.PubMedGoogle Scholar
  33. 33.
    Yuan JM, Wang XL, Xiang YB et al. Preserved foods in relation to risk of nasopharyngeal carcinoma in Shanghai, China. Int J Cancer 2000; 85(3):358–363.PubMedCrossRefGoogle Scholar
  34. 34.
    Zheng YM, Tuppin P, Hubert A et al. Environmental and dietary risk factors for nasopharyngeal carcinoma: a case-control study in Zangwu County, Guangxi, China. Br J Cancer 1994; 69(3):508–514.PubMedCrossRefGoogle Scholar
  35. 35.
    Farrow DC, Vaughan TL, Berwick M et al. Diet and nasopharyngeal cancer in a low-risk population. Int J Cancer 1998; 78(6):675–679.PubMedCrossRefGoogle Scholar
  36. 36.
    IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol 17. Lyon: International Agency for Research on Cancer 1987.Google Scholar
  37. 37.
    Poirier S, Hubert A, de The G et al. Occurrence of volatile nitrosamines in food samples collected in three high-risk areas for nasopharyngeal carcinoma. IARC Sci Publ 1987; (84):415–419.Google Scholar
  38. 38.
    Poirier S, Ohshima H, de The G et al. Volatile nitrosamine levels in common foods from Tunisia, south China and Greenland, high-risk areas for nasopharyngeal carcinoma (NPC). Int J Cancer 1987; 39(3):293–296.CrossRefGoogle Scholar
  39. 39.
    Zou X, Li J, Lu S et al. Volatile N-nitrosamines in salted fish samples from high- and low-risk areas for NPC in China. Chin Med Sci J 1992; 7(4):201–204.PubMedGoogle Scholar
  40. 40.
    Zou XN, Lu SH, Liu B. Volatile N-nitrosamines and their precursors in Chinese salted fish–a possible etological factor for NPC in china. Int J Cancer 1994; 59(2):155–158.PubMedCrossRefGoogle Scholar
  41. 41.
    Poirier S, Bouvier G, Malaveille C et al. Volatile nitrosamine levels and genotoxicity of food samples from high-risk areas for nasopharyngeal carcinoma before and after nitrosation. Int J Cancer 1989; 44(6): 1088–1094.PubMedCrossRefGoogle Scholar
  42. 42.
    Ward MH, Pan WH, Cheng YJ et al. Dietary exposure to nitrite and nitrosamines and risk of nasopharyngeal carcinoma in Taiwan. Int J Cancer 2000; 86(5):603–609.PubMedCrossRefGoogle Scholar
  43. 43.
    Shao YM, Poirier S, Ohshima H et al. Epstein-Barr virus activation in Raji cells by extracts of preserved food from high risk areas for nasopharyngeal carcinoma. Carcinogenesis 1988; 9(8): 1455–1457.PubMedCrossRefGoogle Scholar
  44. 44.
    Bouvier G, Hergenhahn M, Polack Aet al. Characterization of macromolecular lignins as Epstein-Barr virus inducer in foodstuff associated with nasopharyngeal carcinoma risk. Carcinogenesis 1995; 16(8): 1879-1885.Google Scholar
  45. 45.
    Bauer G. Quantitative analysis of the cooperative effect between inducers of Epstein-Barr virus antigen synthesis. J Gen Virol 1983; 64 (Pt 6): 1337–1346.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhu K, Levine RS, Brann EA et al. Cigarette smoking and nasopharyngeal cancer: an analysis of the relationship according to age at starting smoking and age at diagnosis. J Epidemiol 1997; 7(2): 107–111.PubMedCrossRefGoogle Scholar
  47. 47.
    Vaughan TL, Shapiro JA, Burt RD et al. Nasopharyngeal cancer in a low-risk population: defining risk factors by histological type. Cancer Epidemiol Biomarkers Prev 1996; 5(8):587–593.PubMedGoogle Scholar
  48. 48.
    Chow WH, McLaughlin JK, Hrubec Z et al. Tobacco use and nasopharyngeal carcinoma in a cohort of US veterans. Int J Cancer 1993; 55(4):538–540.PubMedCrossRefGoogle Scholar
  49. 49.
    Nam JM, McLaughlin JK, Blot WJ. Cigarette smoking, alcohol, and nasopharyngeal carcinoma: acase-control study among U.S. whites. J Natl Cancer Inst 1992; 84(8):619–622.PubMedCrossRefGoogle Scholar
  50. 50.
    Mabuchi K, Bross DS, Kessler, II. Cigarette smoking and nasopharyngeal carcinoma. Cancer 1985; 55(12):2874–2876.PubMedCrossRefGoogle Scholar
  51. 51.
    Friborg JT, Yuan JM, Wang R et al. A prospective study of tobacco and alcohol use as risk factors for pharyngeal carcinomas in Singapore Chinese. Cancer 2007; 109(6): 1183–1191.PubMedCrossRefGoogle Scholar
  52. 52.
    Guo X, Johnson RC, Deng H et al. Evaluation of nonviral risk factors for nasopharyngeal carcinoma in a high-risk population of Southern China. Int J Cancer 2009; 124(12):2942–2947.PubMedCrossRefGoogle Scholar
  53. 53.
    Zou J, Sun Q, Akiba S et al. A case-control study of nasopharyngeal carcinoma in the high background radiation areas of Yangjiang, China. J Radiat Res (Tokyo) 2000; 41 Suppl:53–62.CrossRefGoogle Scholar
  54. 54.
    Armstrong RW, Imrey PB, Lye MS et al. Nasopharyngeal carcinoma in Malaysian Chinese: occupational exposures to particles, formaldehyde and heat. Int J Epidemiol 2000; 29(6):991–998.PubMedCrossRefGoogle Scholar
  55. 55.
    Cheng YJ, Hildesheim A, Hsu MM et al. Cigarette smoking, alcohol consumption and risk of nasopharyngeal carcinoma in Taiwan. Cancer Causes Control 1999; 10(3):201–207.PubMedCrossRefGoogle Scholar
  56. 56.
    Yu MC, Garabrant DH, Huang TB et al. Occupational and other nondietary risk factors for nasopharyngeal carcinoma in Guangzhou, China. Int J Cancer 1990; 45(6): 1033–1039.PubMedCrossRefGoogle Scholar
  57. 57.
    Chen CJ, Liang KY, Chang YS et al. Multiple risk factors of nasopharyngeal carcinoma: Epstein-Barr virus, malarial infection, cigarette smoking and familial tendency. Anticancer Res 1990; 10(2B):547–553.PubMedGoogle Scholar
  58. 58.
    Yuan JM, Wang XL, Xiang YB et al. Non-dietary risk factors for nasopharyngeal carcinoma in Shanghai, China. Int J Cancer 2000; 85(3):364–369.PubMedCrossRefGoogle Scholar
  59. 59.
    Ning JP, Yu MC, Wang QS et al. Consumption of salted fish and other risk factors for nasopharyngeal carcinoma (NPC) in Tianjin, a low-risk region for NPC in the People’s Republic of China. J Natl Cancer Inst 1990;82(4):291–296.PubMedCrossRefGoogle Scholar
  60. 60.
    Hashibe M, Straif K, Tashkin DP et al. Epidemiologic review of marijuana use and cancer risk. Alcohol 2005; 35(3):265–275.PubMedCrossRefGoogle Scholar
  61. 61.
    Armstrong RW, Imrey PB, Lye MS et al. Nasopharyngeal carcinoma in Malaysian Chinese: salted fish and other dietary exposures. Int J Cancer 1998; 77(2):228–235.PubMedCrossRefGoogle Scholar
  62. 62.
    Chen L, Gallicchio L, Boyd-Lindsley K et al. Alcohol consumption and the risk of nasopharyngeal carcinoma: a systematic review. Nutr Cancer 2009; 61(1): 1–15.PubMedCrossRefGoogle Scholar
  63. 63.
    Yu MC, Ho JH, Lai SH et al. Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case-control study in Hong Kong. Cancer Res 1986; 46(2):956–961.PubMedGoogle Scholar
  64. 64.
    Maeda E, Akahane M, Kiryu S et al. Spectrum of Epstein-Barr virus-related diseases: a pictorial review. Jpn J Radiol 2009;27(l):4–19.PubMedCrossRefGoogle Scholar
  65. 65.
    Henle W, Henle G, Ho HC et al. Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma, other head and neck neoplasms, and control groups. J Natl Cancer Inst 1970; 44(1):225–231.PubMedGoogle Scholar
  66. 66.
    Chien YC, Chen JY, Liu MY et al. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 2001; 345(26): 1877–1882.PubMedCrossRefGoogle Scholar
  67. 67.
    Niedobitek G, Hansmann ML, Herbst H et al. Epstein-Barr virus and carcinomas: undifferentiated carcinomas but not squamous cell carcinomas of the nasopharynx are regularly associated with the virus. J Pathol 1991; 165(l):17–24.PubMedCrossRefGoogle Scholar
  68. 68.
    Niedobitek G, Young LS, Sam CK et al. Expression of Epstein-Barr virus genes and of lymphocyte activation molecules in undifferentiated nasopharyngeal carcinomas. Am J Pathol 1992; 140(4):879–887.PubMedGoogle Scholar
  69. 69.
    Pathmanathan R, Prasad U, Chandrika G et al. Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein-Barr virus-infected neoplasia. Am J Pathol 1995; 146(6):1355–1367.PubMedGoogle Scholar
  70. 70.
    Pathmanathan R, Prasad U, Sadler R et al. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med 1995; 333(11):693–698.PubMedCrossRefGoogle Scholar
  71. 71.
    Pak MW, To KF, Lo YM et al. Nasopharyngeal carcinoma in situ (NPCIS)—pathologic and clinical perspectives. Head Neck 2002; 24(11):989–995.PubMedCrossRefGoogle Scholar
  72. 72.
    Yeung WM, Zong YS, Chiu CT et al. Epstein-Barr virus carriage by nasopharyngeal carcinoma in situ. Int J Cancer 1993; 53(5):746–750.PubMedCrossRefGoogle Scholar
  73. 73.
    Tao Q, Srivastava G, Chan AC et al. Epstein-Barr-virus-infected nasopharyngeal intraepithelial lymphocytes. Lancet 1995; 345(8960): 1309–1310.PubMedCrossRefGoogle Scholar
  74. 74.
    Tao Q, Srivastava G, Chan AC et al. Evidence for lytic infection by Epstein-Barr virus inmucosal lymphocytes instead of nasopharyngeal epithelial cells in normal individuals. J Med Virol 1995; 45(l):71–77.PubMedCrossRefGoogle Scholar
  75. 75.
    Tsai ST, Jin YT, Mann RB et al. Epstein-Barr virus detection in nasopharyngeal tissues of patients with suspected nasopharyngeal carcinoma. Cancer 1998; 82(8): 1449–1453.PubMedCrossRefGoogle Scholar
  76. 76.
    Raab-Traub N, Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 1986; 47(6):883–889.PubMedCrossRefGoogle Scholar
  77. 77.
    Shimakage M, Chatani M, Ikegami N et al. Rearranged Epstein-Barr virus genomes and clonal origin in nasopharyngeal carcinoma. Jpn J Cancer Res 1989; 80(7):612–616.PubMedCrossRefGoogle Scholar
  78. 78.
    Knox PG, Li QX, Rickinson AB et al. In vitro production of stable Epstein-Barr virus-positive epithelial cell clones which resemble the virus:cell interaction observed in nasopharyngeal carcinoma. Virology 1996; 215(l):40–50.PubMedCrossRefGoogle Scholar
  79. 79.
    Niedobitek G. Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Mol Pathol 2000; 53(5):248–254.PubMedCrossRefGoogle Scholar
  80. 80.
    Chan AS, To KF, Lo KW et al. High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese. Cancer Res 2000; 60(19):5365–5370.PubMedGoogle Scholar
  81. 81.
    Sengupta S, den Boon JA, Chen IH et al. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res 2006; 66(16):7999–8006.PubMedCrossRefGoogle Scholar
  82. 82.
    Shah KM, Young LS. Epstein-Barr virus and carcinogenesis: beyond Burkitt’s lymphoma. Clin Microbiol Infect 2009; 15(11):982–988.PubMedCrossRefGoogle Scholar
  83. 83.
    Tao Q, Chan AT. Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev Mol Med 2007; 9(12): 1–24.PubMedCrossRefGoogle Scholar
  84. 84.
    Chang CM, Yu KJ, Mbulaiteye SM et al. The extent of genetic diversity of Epstein-Barr virus and its geographic and disease patterns: a need for reappraisal. Virus Res 2009; 143(2):209–221.PubMedCrossRefGoogle Scholar
  85. 85.
    IARC. Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. IARC Monogr Eval Carcinog Risks Hum 2006; 88.Google Scholar
  86. 86.
    Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357(9255):539–545.PubMedCrossRefGoogle Scholar
  87. 87.
    Shebl FM, Bhatia K, Engels EA. Salivary gland and nasopharyngeal cancers in individuals with acquired immunodeficiency syndrome in United States. Int J Cancer 2009.Google Scholar
  88. 88.
    Huang YL, Chen YJ, Lin MW et al. Malignancies associated with dermatomyositis and polymyositis in Taiwan: a nationwide population-based study. Br J Dermatol 2009; 161(4):854–860.PubMedCrossRefGoogle Scholar
  89. 89.
    IARC. Betel-quid and Areca-nut Chewing and Some Areca-nut-derived Nitrosamines. IARC Monogr Eval Carcinog Risks Hum 2004; 85.Google Scholar
  90. 90.
    Jia WH, Feng BJ, Xu ZL et al. Familial risk and clustering of nasopharyngeal carcinoma in Guangdong, China. Cancer 2004; 101(2):363–369.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhou X, Cui J, Macias V et al. The progress on genetic analysis of nasopharyngeal carcinoma. Comp Funct Genomics 2007; 57513.Google Scholar
  92. 92.
    Shih-Hsin WuL. Construction of evolutionary tree models for nasopharyngeal carcinoma using comparative genomic hybridization data. Cancer Genet Cytogenet 2006; 168(2): 105–108.CrossRefGoogle Scholar
  93. 93.
    Huang Z, Desper R, Schaffer AA et al. Construction of tree models for pathogenesis of nasopharyngeal carcinoma. Genes Chromosomes Cancer 2004; 40(4):307–315.PubMedCrossRefGoogle Scholar
  94. 94.
    Chan AS, To KF, Lo KW et al. Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from southern Chinese. Int J Cancer 2002; 102(3):300–303.PubMedCrossRefGoogle Scholar
  95. 95.
    Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma. Cancer Cell 2004; 5(5):423–428.PubMedCrossRefGoogle Scholar
  96. 96.
    Li X, Fasano R, Wang E et al. HLA associations with nasopharyngeal carcinoma. Curr Mol Med 2009; 9(6):751–765.PubMedCrossRefGoogle Scholar
  97. 97.
    Hildesheim A, Apple RJ, Chen CJ et al. Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 2002; 94(23): 1780–1789.PubMedCrossRefGoogle Scholar
  98. 98.
    Ren EC, Law GC, Chan SH. HLA-A2 allelic microvariants in nasopharyngeal carcinoma. Int J Cancer 1995; 63(2):213–215.PubMedCrossRefGoogle Scholar
  99. 99.
    Lu CC, Chen JC, Jin YT et al. Genetic susceptibility to nasopharyngeal carcinoma within the HLA-A locus in Taiwanese. Int J Cancer 2003; 103(6):745–751.PubMedCrossRefGoogle Scholar
  100. 100.
    Pasini E, Caggiari L, Dal Maso L et al. Undifferentiated nasopharyngeal carcinoma from a nonendemic area: protective role of HLA allele products presenting conserved EBV epitopes. Int J Cancer 2009; 125(6):1358–1364.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee SP, Tierney RJ, Thomas WA et al. Conserved CTL epitopes within EBV latent membrane protein 2: a potential target for CTL-based tumor therapy. J Immunol 1997; 158(7):3325–3334.PubMedGoogle Scholar
  102. 102.
    Lin JC, Cherng JM, Lin HJ et al. Amino acid changes in functional domains of latent membrane protein 1 of Epstein-Barr virus in nasopharyngeal carcinoma of southern China and Taiwan: prevalence of an HLA A2-restricted ‘epitope-loss variant’. J Gen Virol 2004; 85 (Pt 7):2023–2034.PubMedCrossRefGoogle Scholar
  103. 103.
    Lin HJ, Cherng JM, Hung MS et al. Functional assays of HLA A2-restricted epitope variant of latent membrane protein 1 (LMP-1) of Epstein-Barr virus in nasopharyngeal carcinoma of Southern China and Taiwan. J Biomed Sci 2005; 12(6):925–936.PubMedCrossRefGoogle Scholar
  104. 104.
    Midgley RS, Bell AI, Yao QY et al. HLA-A11-restricted epitope polymorphism among Epstein-Barr virus strains in the highly HLA-A 11-positive Chinese population: incidence and immunogenicity of variant epitope sequences. J Virol 2003; 77(21):11507–11516.PubMedCrossRefGoogle Scholar
  105. 105.
    Xiong W, Zeng ZY, Xia JH et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res 2004; 64(6): 1972–1974.PubMedCrossRefGoogle Scholar
  106. 106.
    Feng BJ, Huang W, Shugart YY et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4. Nat Genet 2002; 31(4):395–399.PubMedGoogle Scholar
  107. 107.
    Hu LF, Qiu QH, Fu SM et al. A genome-wide scan suggests a susceptibility locus on 5p 13 for nasopharyngeal carcinoma. Eur J Hum Genet 2008; 16(3):343–349.PubMedCrossRefGoogle Scholar
  108. 108.
    Lu SJ, Day NE, Degos L et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region. Nature 1990; 346(6283):470–471.PubMedCrossRefGoogle Scholar
  109. 109.
    Hildesheim A, Anderson LM, Chen CJ et al. CYP2E1 genetic polymorphisms and risk of nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 1997; 89(16): 1207–1212.PubMedCrossRefGoogle Scholar
  110. 110.
    Hildesheim A, Chen CJ, Caporaso NE et al. Cytochrome P4502E1 genetic polymorphisms and risk of nasopharyngeal carcinoma: results from a case-control study conducted in Taiwan. Cancer Epidemiol Biomarkers Prev 1995; 4(6):607–610.PubMedGoogle Scholar
  111. 111.
    Yang XR, Diehl S, Pfeiffer R et al. Evaluation of risk factors for nasopharyngeal carcinoma in high-risk nasopharyngeal carcinoma families in Taiwan. Cancer Epidemiol Biomarkers Prev 2005; 14(4):900–905.PubMedCrossRefGoogle Scholar
  112. 112.
    Kongruttanachok N, Sukdikul S, Setavarin S et al. Cytochrome P4502E1 polymorphism and nasopharyngeal carcinoma development in Thailand: a correlative study. BMC Cancer 2001; 1:4.PubMedCrossRefGoogle Scholar
  113. 113.
    He ZM, Chen ZC, Yuan JH et al. Expression of Cytochrome p450 2E1 in nasopharynx and polymorphism analysis. Chinese Journal of Pathophysiology 2000; 16(20): 1060.Google Scholar
  114. 114.
    Jia WH, Pan QH, Qin HD et al. A Case-Control and a Family-Based Association Study Revealing an Association between CYP2E1 Polymorphisms and Nasopharyngeal Carcinoma Risk in Cantonese. Carcinogenesis 2009.Google Scholar
  115. 115.
    Tiwawech D, Srivatanakul P, Karalak A et al. Cytochrome P450 2A6 polymorphism in nasopharyngeal carcinoma. Cancer Lett 2006; 241(1):135–141.PubMedCrossRefGoogle Scholar
  116. 116.
    Zhuo X, Cai L, Xiang Z et al. GSTM1 and GSTT1 polymorphisms and nasopharyngeal cancer risk: an evidence-based meta-analysis. J Exp Clin Cancer Res 2009; 28:46.PubMedCrossRefGoogle Scholar
  117. 117.
    Bendjemana K, Abdennebi M, Gara S et al [Genetic polymorphism of gluthation-S transferases and N-acetyl transferases 2 and nasopharyngeal carcinoma: the Tunisia experience]. Bull Cancer 2006; 93(3):297–302.PubMedGoogle Scholar
  118. 118.
    Cho EY, Hildesheim A, Chen CJ et al. Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGGl. Cancer Epidemiol Biomarkers Prev 2003; 12(10):l100–1104.Google Scholar
  119. 119.
    Cao Y, Miao XP, Huang MY et al. Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population. BMC Cancer 2006; 6:167.PubMedCrossRefGoogle Scholar
  120. 120.
    Yang ZH, Dai Q, Kong XL et al. Association of ERCC1 polymorphisms and susceptibility to nasopharyngeal carcinoma. Mol Carcinog 2009; 48(3): 196–201.PubMedCrossRefGoogle Scholar
  121. 121.
    Qin HD, Shugart YY, Bei JX et al. Comprehensive pathway-based association study of DNA repair gene variants and the risk of nasopharyngeal carcinoma. Cancer Res 2011; 71(8):3000–3008.PubMedCrossRefGoogle Scholar
  122. 122.
    Zhuo XL, Cai L, Xiang ZL et al. TP53 codon 72 polymorphism contributes to nasopharyngeal cancer susceptibility: a meta-analysis. Arch Med Res 2009; 40(4):299–305.PubMedCrossRefGoogle Scholar
  123. 123.
    Deng L, Zhao XR, Pan KF et al. Cyclin Dl polymorphism and the susceptibility to NPC using DHPLC. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 2002; 34(1): 16–20.Google Scholar
  124. 124.
    Catarino RJ, Breda E, Coelho V et al. Association of the A870G cyclin D1 gene polymorphism with genetic susceptibility to nasopharyngeal carcinoma. Head Neck 2006; 28(7):603–608.PubMedCrossRefGoogle Scholar
  125. 125.
    Zhou XX, Jia WH, Shen GP et al. Sequence variants in toll-like receptor 10 are associated with nasopharyngeal carcinoma risk. Cancer Epidemiol Biomarkers Prev 2006; 15(5):862–866.PubMedCrossRefGoogle Scholar
  126. 126.
    He JF, Jia WH, Fan Q et al. Genetic polymorphisms of TLR3 are associated with Nasopharyngeal carcinoma risk in Cantonese population. BMC Cancer 2007; 7:194.PubMedCrossRefGoogle Scholar
  127. 127.
    He Y, Zhou G, Zhai Y et al. Association of PLUNC gene polymorphisms with susceptibility to nasopharyngeal carcinoma in a Chinese population. J Med Genet 2005; 42(2): 172–176.PubMedCrossRefGoogle Scholar
  128. 128.
    Wei YS, Lan Y, Luo B et al. Association of variants in the interleukin-27 and interleukin-12 gene with nasopharyngeal carcinoma. Mol Carcinog 2009; 48(8):751–757.PubMedCrossRefGoogle Scholar
  129. 129.
    Wei YS, Lan Y, Tang RG et al. Single nucleotide polymorphism and haplotype association of the interleukin-8 gene with nasopharyngeal carcinoma. Clin Immunol 2007; 125(3):309–317.PubMedCrossRefGoogle Scholar
  130. 130.
    Ben Nasr H, Chahed K, Mestiri S et al. Association of IL-8 (−251)T/A polymorphism with susceptibility to and aggressiveness of nasopharyngeal carcinoma. Hum Immunol 2007; 68(9):761–769.PubMedCrossRefGoogle Scholar
  131. 131.
    Bel Hadj Jrad B, Mahfouth W, Bouaouina N et al. A polymorphism in FAS gene promoter associated with increased risk of nasopharyngeal carcinoma and correlated with anti-nuclear autoantibodies induction. Cancer Lett 2006; 233(l):21–27.Google Scholar
  132. 132.
    Fan Q, Jia WH, Zhang RH et al. [Correlation of polymeric immunoglobulin receptor gene polymorphisms to susceptibility of nasopharyngeal carcinoma]. Ai Zheng 2005; 24(8):915–918.PubMedGoogle Scholar
  133. 133.
    Chen Y, Chan SH. Polymorphism of T-cell receptor genes in nasopharyngeal carcinoma. Int J Cancer 1994; 56(6):830–833.PubMedCrossRefGoogle Scholar
  134. 134.
    Ng CC, Yew PY, Puah SM et al. A genome-wide association study identifies ITGA9 conferring risk of nasopharyngeal carcinoma. J Hum Genet 2009; 54(7):392–397.PubMedCrossRefGoogle Scholar
  135. 135.
    Tse KP, Su WH, Chang KP et al. Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p 21.3. Am J Hum Genet 2009; 85(2): 194–203.PubMedCrossRefGoogle Scholar
  136. 136.
    Bei JX, Li Y, Jia WH et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet 2010; 42(7):599–603.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Bing-Jian Feng
    • 1
  1. 1.Department of DermatologyUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations