Skip to main content

Local Actions of Natriuretic Peptides and Nitric Oxide in Cardiac Remodeling: Implications for Therapy

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

Abstract

Cardiac remodeling in response to sustained pressure overload involves ­cardiomyocyte hypertrophy and contractile dysfunction together with interstitial changes such as fibrosis and diminished capillary density. These changes are modulated by mechanical forces and factors secreted between and even within cells, exerting paracrine and auto-/intracrine actions. Among these factors are the natriuretic peptides atrial and B-type NPs (ANP and BNP, mainly released from myocytes), C-type NP (CNP, possibly secreted from fibroblasts), as well as nitric oxide (NO) (produced by different myocardial cell types). These factors, which signal through specific guanylyl cyclase receptors and intracellular cyclic GMP as second messenger, may act as key local antihypertrophic, antifibrotic, and proangiogenic factors during cardiac remodeling. This chapter will therefore summarize the insights obtained from experimental and clinical studies to highlight (1) natriuretic peptide- and NO-dependent modulation of myocyte growth and secretion of profibrotic factors, (2) the role of direct fibroblast actions of natriuretic peptides and NO during cardiac hypertrophy, (3) potential local proangiogenic actions of ANP and BNP, (4) alterations of these ligand/receptor systems in cardiac remodeling, and (5) potential therapeutical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANP:

Atrial natriuretic peptide

BNP:

B-type natriuretic peptide

cGKI:

cGMP-dependent protein kinase type I

CNP:

C-type natriuretic peptide

GC:

Guanylyl cyclase receptor

GC:

Guanylyl cyclase

NO:

Nitric oxide

PDE:

Phosphodiesterase

References

  1. Beavo JA, Brunton LL (2002) Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718

    Article  PubMed  CAS  Google Scholar 

  2. Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709

    Article  PubMed  CAS  Google Scholar 

  3. Biel M, Michalakis S (2009) Cyclic nucleotide-gated channels. Handb Exp Pharmacol 191:111–136

    Article  PubMed  CAS  Google Scholar 

  4. Hofmann F, Bernhard D, Lukowski R, Weinmeister P (2009) cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 191:137–162

    Article  PubMed  CAS  Google Scholar 

  5. Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91:651–690

    Article  PubMed  CAS  Google Scholar 

  6. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  7. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  8. Kuhn M (2009) Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases. Handb Exp Pharmacol 191:47–69

    Article  PubMed  CAS  Google Scholar 

  9. Ehret GB, International Consortium for Blood Pressure Genome-Wide Association Studies et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–109

    Article  PubMed  CAS  Google Scholar 

  10. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70:665–699

    PubMed  CAS  Google Scholar 

  11. Olney RC (2006) C-type natriuretic peptide in growth: a new paradigm. Growth Horm IGF Res 16:S6–S14

    Article  PubMed  CAS  Google Scholar 

  12. Pfeifer A, Aszodi A, Seidler U et al (1996) Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274:2082–2086

    Article  PubMed  CAS  Google Scholar 

  13. Chusho H, Tamura N, Ogawa Y et al (2004) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA 98:4016–4021

    Article  Google Scholar 

  14. Tamura N, Doolittle LK, Hammer RE et al (2004) Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sci USA 101:17300–17305

    Article  PubMed  CAS  Google Scholar 

  15. Bartels CF, Bükülmez H, Padayatti P et al (2004) Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet 75:27–34

    Article  PubMed  CAS  Google Scholar 

  16. de Bold AJ, Ma KK, Zhang Y et al (2001) The physiological and pathophysiological modulation of the endocrine function of the heart. Can J Physiol Pharmacol 79:705–714

    Article  PubMed  Google Scholar 

  17. Calderone A, Thaik CM et al (1998) Nitric oxide, atrial natriuretic peptide, and cGMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 101:812–818

    Article  PubMed  CAS  Google Scholar 

  18. Lopez MJ, Wong SK, Kishimoto I et al (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378:65–68

    Article  PubMed  CAS  Google Scholar 

  19. John SW, Veress AT, Honrath U et al (1996) Blood pressure and fluid-electrolyte balance in mice with reduced or absent ANP. Am J Physiol 271:R109–R114

    PubMed  CAS  Google Scholar 

  20. Holtwick R, Van Eickels M, Skryabin BV et al (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Invest 111:1399–1407

    PubMed  CAS  Google Scholar 

  21. Kilic A, Bubikat A, Gaßner B, Baba HA, Kuhn M (2007) Local actions of atrial natriuretic peptide counteract angiotensin II stimulated cardiac remodeling. Endocrinology 148:4162–4416

    Article  PubMed  CAS  Google Scholar 

  22. Klaiber M, Kruse M, Völker K et al (2010) Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Res Cardiol 5:583–595

    Article  Google Scholar 

  23. Patel JB, Valencik ML, Pritchett AM et al (2005) Cardiac-specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload. Am J Physiol Heart Circ Physiol 289:H777–H784

    Article  PubMed  CAS  Google Scholar 

  24. Tamura N, Ogawa Y, Chusho H et al (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97:4239–4244

    Article  PubMed  CAS  Google Scholar 

  25. Tsuruda T, Boerrigter G, Huntley BK et al (2002) Brain natriuretic peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res 91:1127–1134

    Article  PubMed  CAS  Google Scholar 

  26. Kapoun AM, Liang F, O’Young G et al (2004) B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94:453–461

    Article  PubMed  CAS  Google Scholar 

  27. Kuhn M (2012) Endothelial actions of atrial and B-type natriuretic peptides. Br J Pharmacol 166:522–531

    Article  PubMed  CAS  Google Scholar 

  28. Kook H, Itoh H, Choi BS et al (2003) Physiological concentration of atrial natriuretic peptide induces endothelial regeneration in vitro. Am J Physiol 284:H1388–H1397

    CAS  Google Scholar 

  29. Chen H, Levine YC, Golan DE, Michel T, Lin AJ (2008) Atrial natriuretic peptide-initiated cGMP pathways regulate vasodilator-stimulated phosphoprotein phosphorylation and angiogenesis in vascular endothelium. J Biol Chem 283:4439–4447

    Article  PubMed  CAS  Google Scholar 

  30. Walsh K, Shiojima I (2007) Cardiac growth and angiogenesis coordinated by intertissue ­interactions. J Clin Invest 117:3176–3179

    Article  PubMed  CAS  Google Scholar 

  31. Kuhn M, Völker K, Schwarz K et al (2009) The natriuretic peptide/guanylyl cyclase-A system functions as a stress-responsive regulator of angiogenesis in mice. J Clin Invest 119:2019–2030

    Article  PubMed  CAS  Google Scholar 

  32. Molkentin JD (2003) A friend within the heart: natriuretic peptide receptor signaling. J Clin Invest 111:1275–1277

    PubMed  CAS  Google Scholar 

  33. Langenickel TH, Buttgereit J, Pagel-Langenickel I et al (2006) Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci USA 12:4735–4740

    Article  Google Scholar 

  34. Wang Y, de Waard MC, Sterner-Kock A et al (2007) Cardiomyocyte-restricted over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. Eur J Heart Fail 9:548–557

    Article  PubMed  CAS  Google Scholar 

  35. Frantz S, Klaiber M, Baba HA et al (2011) Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I. Eur Heart J [Epub ahead of print]

    Google Scholar 

  36. Kalra PR, Clague JR, Bolger AO et al (2003) Myocardial production of C-type natriuretic peptide in chronic heart failure. Circulation 4:571–573

    Article  Google Scholar 

  37. Dickey DM, Flora DR et al (2007) Differential regulation of membrane guanylyl cyclases in congestive heart failure: natriuretic peptide receptor (NPR)-B, not NPR-A, is the predominant natriuretic peptide receptor in the failing heart. Endocrinology 7:3518–3522

    Article  Google Scholar 

  38. Hammond J, Balligand JL (2012) Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol 52:330–340

    Article  PubMed  CAS  Google Scholar 

  39. Barouch LA, Harrison RW, Skaf MW et al (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339

    Article  PubMed  CAS  Google Scholar 

  40. Fiedler B, Lohmann SM, Smolenski A et al (2002) Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci USA 99:11363–11368

    Article  PubMed  CAS  Google Scholar 

  41. Feil R, Gappa N, Rutz M et al (2002) Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms. Circ Res 90:1080–1086

    Article  PubMed  CAS  Google Scholar 

  42. Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563

    Article  PubMed  CAS  Google Scholar 

  43. Osei-Owusu P, Sabharwal R, Kaltenbronn KM et al (2012) Regulator of G protein signaling 2 deficiency causes endothelial dysfunction and impaired endothelium-derived hyperpolarizing factor-mediated relaxation by dysregulating Gi/o signaling. J Biol Chem 287:12541–12549

    Article  PubMed  CAS  Google Scholar 

  44. Heximer SP, Knutsen RH, Sun X et al (2003) Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 111:445–452

    PubMed  CAS  Google Scholar 

  45. Tang KM, Wang GR, Lu P et al (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512

    Article  PubMed  CAS  Google Scholar 

  46. Takimoto E, Koitabashi N, Hsu S et al (2009) Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J Clin Invest 119:408–420

    PubMed  CAS  Google Scholar 

  47. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci USA 107:7000–7005

    Article  PubMed  CAS  Google Scholar 

  48. Kinoshita H, Kuwahara K, Nishida M et al (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106:1849–1860

    Article  PubMed  CAS  Google Scholar 

  49. Nishida M, Watanabe K, Sato Y et al (2010) Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J Biol Chem 285:13244–13253

    Article  PubMed  CAS  Google Scholar 

  50. Li P, Wang D, Lucas J et al (2008) Atrial natriuretic peptide inhibits transforming growth factor ß-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res 102:185–192

    Article  PubMed  CAS  Google Scholar 

  51. Yamahara K, Itoh H, Chun TH et al (2003) Significance and therapeutical potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc Natl Acad Sci USA 100:3404–3409

    Article  PubMed  CAS  Google Scholar 

  52. Aicher A, Heeschen C, Feil S et al (2009) cGMP-dependent protein kinase I is crucial for angiogenesis and postnatal vasculogenesis. PLoS One 4:e4879

    Article  PubMed  Google Scholar 

  53. Koika V, Zhou Z, Vasileiadis I et al (2010) PKG-I inhibition attenuates vascular endothelial growth factor-stimulated angiogenesis. Vascul Pharmacol 53:215–222

    Article  PubMed  CAS  Google Scholar 

  54. Smolenski A, Poller W, Walter U, Lohmann SM (2000) Regulation of human endothelial cell focal adhesion sites and migration by cGMP-dependent protein kinase I. J Biol Chem 275:25723–25732

    Article  PubMed  CAS  Google Scholar 

  55. Newton-Cheh C, Johnson T, Gateva V et al (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676

    Article  PubMed  CAS  Google Scholar 

  56. Rutledge DR, Sun Y, Ross EA (1995) Polymorphisms within the atrial natriuretic peptide gene in essential hypertension. J Hypertens 13:953–955

    Article  PubMed  CAS  Google Scholar 

  57. Beige J, Ringel J, Hohenbleicher H et al (1997) HpaII-polymorphism of the atrial-natriuretic-peptide gene and essential hypertension in whites. Am J Hypertens 10:1316–1318

    Article  PubMed  CAS  Google Scholar 

  58. Rubattu S, Bigatti G, Evangelista A et al (2006) Association of atrial natriuretic peptide and type a natriuretic peptide receptor gene polymorphisms with left ventricular mass in human essential hypertension. J Am Coll Cardiol 48:499–505

    Article  PubMed  CAS  Google Scholar 

  59. Ellis KL, Newton-Cheh C, Wang TJ et al (2011) Association of genetic variation in the natriuretic peptide system with cardiovascular outcomes. J Mol Cell Cardiol 50:695–701

    Article  PubMed  CAS  Google Scholar 

  60. McKie PM, Cataliotti A, Sangaralingham SJ et al (2011) Predictive utility of atrial, N-terminal pro-atrial, and N-terminal pro-B-type natriuretic peptides for mortality and cardiovascular events in the general community: a 9-year follow-up study. Mayo Clin Proc 86:1154–1160

    Article  PubMed  CAS  Google Scholar 

  61. Menon SG, Mills RM, Schellenberger U, Saqhir S, Protter AA (2009) Clinical implications of defective B-type natriuretic peptide. Clin Cardiol 32:E36–E41

    Article  PubMed  Google Scholar 

  62. Potter LR (2011) Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther 130:71–82

    Article  PubMed  CAS  Google Scholar 

  63. Schröter J, Zahedi RP, Hartmann M et al (2010) Homologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation pattern. FEBS J 277:2440–2453

    Article  PubMed  Google Scholar 

  64. Klaiber M, Dankworth B, Kruse M et al (2011) A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide. Proc Natl Acad Sci USA 108:18500–18505

    Article  PubMed  CAS  Google Scholar 

  65. Takimoto E, Champion HC, Li M et al (2005) Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 115:1221–1231

    PubMed  CAS  Google Scholar 

  66. Tsai EJ, Liu Y, Koitabashi N et al (2012) Pressure-overload-induced subcellular relocalization/oxidation of soluble guanylyl cyclase in the heart modulates enzyme stimulation. Circ Res 110:295–303

    Article  PubMed  CAS  Google Scholar 

  67. Nagendran J, Archer SL, Soliman D et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116:238–248

    Article  PubMed  CAS  Google Scholar 

  68. Pokreisz P, Vandenwijngaert S, Bito V et al (2009) Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation 119:408–516

    Article  PubMed  CAS  Google Scholar 

  69. Shan X, Quaile MP, Monk JK et al (2012) Differential expression of PDE5 in failing and nonfailing human myocardium. Circ Heart Fail 5:79–86

    Article  PubMed  CAS  Google Scholar 

  70. Hayek S, Nemer M (2011) Cardiac natriuretic peptides: from basic discovery to clinical practice. Cardiovasc Ther 29:362–376

    Article  PubMed  CAS  Google Scholar 

  71. Gassanov N, Biesenbach E, Caglayan E et al (2012) Natriuretic peptides in therapy for decompensated heart failure. Eur J Clin Pharmacol 68:223–230

    Article  PubMed  CAS  Google Scholar 

  72. Saito Y (2010) Roles of atrial natriuretic peptide and its therapeutic use. J Cardiol 56:262–270

    Article  PubMed  Google Scholar 

  73. Ezekowitz JA, Hernandez AF, O’Connor CM et al (2012) Assessment of dyspnea in acute decompensated heart failure: insights from ASCEND-HF (Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure) on the contributions of peak expiratory flow. J Am Coll Cardiol 59:1441–1448

    Article  PubMed  Google Scholar 

  74. Cataliotti A, Tonne JM, Bellavia D et al (2011) Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation 123:1297–1305

    Article  PubMed  CAS  Google Scholar 

  75. Cataliotti A, Costello-Boerrigter LC, Chen HH, Textor SC, Burnett JC Jr (2012) Sustained blood pressure-lowering actions of subcutaneous B-type natriuretic peptide (nesiritide) in a patient with uncontrolled hypertension. Mayo Clin Proc 87:413–415

    Article  PubMed  Google Scholar 

  76. Zakeri R, Burnett JC (2011) Designer natriuretic peptides: a vision for the future of heart failure therapeutics. Can J Physiol Pharmacol 89:593–601

    Article  PubMed  CAS  Google Scholar 

  77. Evgenov OV, Pacher P, Schmidt PM et al (2006) NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5:755–768

    Article  PubMed  CAS  Google Scholar 

  78. Boerrigter G, Costello-Boerrigter LC, Cataliotti A et al (2003) Cardiorenal and humoral properties of a novel direct soluble guanylate cyclase stimulator BAY 41–2272 in experimental congestive heart failure. Circulation 107:686–689

    Article  PubMed  CAS  Google Scholar 

  79. Masuyama H, Tsuruda T, Kato J et al (2006) Soluble guanylate cyclase stimulation on cardiovascular remodeling in angiotensin II-induced hypertensive rats. Hypertension 48:972–978

    Article  PubMed  CAS  Google Scholar 

  80. Masuyama H, Tsuruda T, Sekita Y et al (2009) Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens Res 32:597–603

    Article  PubMed  CAS  Google Scholar 

  81. Gheorghiade M, Marti CN, Sabbah HN et al (2012) Soluble guanylate cyclase: a potential therapeutic target for heart failure. Heart Fail Rev [Epub ahead of print]

    Google Scholar 

  82. Kass DA, Champion HC, Beavo JA (2007) Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res 101:1084–1095

    Article  PubMed  CAS  Google Scholar 

  83. Galiè N, Ghofrani HA, Torbicki A, Sildenafil Use in Pulmonary Arterial Hypertension (SUPER) Study Group et al (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353:2148–2157

    Article  PubMed  Google Scholar 

  84. Salloum FN, Abbate A, Das A et al (2008) Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol 294:H1398–H1406

    Article  PubMed  CAS  Google Scholar 

  85. Takimoto E, Champion HC, Li M et al (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222

    Article  PubMed  CAS  Google Scholar 

  86. Dickey DM, Dries DL, Margulies KB, Potter LR (2012) Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte. J Mol Cell Cardiol 52:727–732

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MK’s work reviewed in this chapter was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 688) and from the comprehensive heart failure center (CHFC) in Würzburg. The authors would like to apologize to all colleagues whose studies were not cited for lack of space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Kuhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuhn, M., Nakagawa, H. (2013). Local Actions of Natriuretic Peptides and Nitric Oxide in Cardiac Remodeling: Implications for Therapy. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_9

Download citation

Publish with us

Policies and ethics