Skip to main content

Role of Galectin-3 Pathways in the Pathogenesis of Cardiac Remodeling and Heart Failure

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1971 Accesses

Abstract

Myocardial injuries stemming from pressure overload or myocardial infarction lead to cardiac remodeling and represent major health problems worldwide. An ever accumulating body of experimental and clinical research appoints galectin-3, a β-galactoside-binding lectin, as a key player in this maladaptive response to myocardial injury. Herein, a specific role for galectin-3 in inflammation and fibrogenesis has been elucidated in experimental and clinical studies. Galectin-3 was first associated with pathological conditions leading to cardiac remodeling, such as inflammation and fibrosis. Then, as the carbohydrate recognition domain of galectin-3 reacts with glycosylated proteins such as laminin, fibronectin, and tenascin, a multifunctional role of galectin-3 in the extracellular matrix was postulated. Notably, experimental animal studies clearly showed that galectin-3 is a mediator of crucial steps in fibrogenesis and further induces cardiac inflammation, hypertrophy, and dysfunction. Possible mechanisms pertaining to galectin-3 inflammatory and fibrotic properties have been suggested to involve macrophage activation, galectin-3-induced chemotaxis, and activation of the TGF-β–Smad3 signaling pathways. Additionally, the link between plasma galectin-3 and fibrosis was also established in clinical biomarker studies. Galectin-3 and its pathways may be explored further in order to develop more efficient strategies to target cardiac remodeling in heart failure leading to fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seetharaman J, Kanigsberg A, Slaaby R et al (1998) X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. J Biol Chem 273:13047–13052

    Article  PubMed  CAS  Google Scholar 

  2. Henrick K, Bawumia S, Barboni EA et al (1998) Evidence for subsites in the galectins involved in sugar binding at the nonreducing end of the central galactose of oligosaccharide ligands: sequence analysis, homology modeling and mutagenesis studies of hamster galectin-3. Glycobiology 8:45–57

    Article  PubMed  CAS  Google Scholar 

  3. Rosenberg I, Cherayil BJ, Isselbacher KJ et al (1991) Mac-2-binding glycoproteins. Putative ligands for a cytosolic beta-galactoside lectin. J Biol Chem 266:18731–18736

    PubMed  CAS  Google Scholar 

  4. Sato S, Hughes RC (1992) Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin. J Biol Chem 267:6983–6990

    PubMed  CAS  Google Scholar 

  5. Ochieng J, Furtak V, Lukyanov P (2004) Extracellular functions of galectin-3. Glycoconj J 19:527–535

    Article  PubMed  Google Scholar 

  6. de Boer RA, Yu L, van Veldhuisen DJ (2010) Galectin-3 in cardiac remodeling and heart failure. Curr Heart Fail Rep 7:1–8

    Article  PubMed  Google Scholar 

  7. Hughes RC (1997) The galectin family of mammalian carbohydrate-binding molecules. Biochem Soc Trans 25:1194–1198

    PubMed  CAS  Google Scholar 

  8. Hughes RC (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta 1473:172–185

    Article  PubMed  CAS  Google Scholar 

  9. Woo HJ, Shaw LM, Messier JM et al (1990) The major non-integrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2). J Biol Chem 265:7097–7099

    PubMed  CAS  Google Scholar 

  10. Koths K, Taylor E, Halenbeck R et al (1993) Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem 268:14245–14249

    PubMed  CAS  Google Scholar 

  11. Probstmeier R, Montag D, Schachner M (1995) Galectin-3, a beta-galactoside-binding animal lectin, binds to neural recognition molecules. J Neurochem 64:2465–2472

    Article  PubMed  CAS  Google Scholar 

  12. Ochieng J, Warfield P (1995) Galectin-3 binding potentials of mouse tumor EHS and human placental laminins. Biochem Biophys Res Commun 217:402–406

    Article  PubMed  CAS  Google Scholar 

  13. Kim H, Lee J, Hyun JW et al (2007) Expression and immunohistochemical localization of galectin-3 in various mouse tissues. Cell Biol Int 31:655–662

    Article  PubMed  CAS  Google Scholar 

  14. Sharma UC, Pokharel S, van Brakel TJ et al (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110:3121–3128

    Article  PubMed  CAS  Google Scholar 

  15. Kasper M, Hughes RC (1996) Immunocytochemical evidence for a modulation of galectin 3 (Mac-2), a carbohydrate binding protein, in pulmonary fibrosis. J Pathol 179:309–316

    Article  PubMed  CAS  Google Scholar 

  16. Wang L, Friess H, Zhu Z et al (2000) Galectin-1 and galectin-3 in chronic pancreatitis. Lab Invest 80:1233–1241

    Article  PubMed  CAS  Google Scholar 

  17. Henderson NC, Mackinnon AC, Farnworth SL et al (2006) Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci USA 103:5060–5065

    Article  PubMed  CAS  Google Scholar 

  18. Sasaki S, Bao Q, Hughes RC (1999) Galectin-3 modulates rat mesangial cell proliferation and matrix synthesis during experimental glomerulonephritis induced by anti-Thy1.1 antibodies. J Pathol 187:481–489

    Article  PubMed  CAS  Google Scholar 

  19. Henderson NC, Mackinnon AC, Farnworth SL et al (2008) Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172:288–298

    Article  PubMed  CAS  Google Scholar 

  20. Eis V, Luckow B, Vielhauer V et al (2004) Chemokine receptor CCR1 but not CCR5 mediates leukocyte recruitment and subsequent renal fibrosis after unilateral ureteral obstruction. J Am Soc Nephrol 15:337–347

    Article  PubMed  CAS  Google Scholar 

  21. Sharma U, Rhaleb NE, Pokharel S et al (2008) Novel anti-inflammatory mechanisms of N-Acetyl-Ser-Asp-Lys-Pro in hypertension-induced target organ damage. Am J Physiol Heart Circ Physiol 294:H1226–H1232

    Article  PubMed  CAS  Google Scholar 

  22. Liu YH, D’Ambrosio M, Liao TD et al (2009) N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol 296:H404–H412

    Article  PubMed  CAS  Google Scholar 

  23. Mackinnon AC, Gibbons MA, Farnworth SL et al (2012) Regulation of Transforming Growth Factor-beta1-driven Lung Fibrosis by Galectin-3. Am J Respir Crit Care Med 185:537–546

    Article  PubMed  CAS  Google Scholar 

  24. Takenaka Y, Fukumori T, Yoshii T et al (2004) Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol 24:4395–4406

    Article  PubMed  CAS  Google Scholar 

  25. Sato S, Burdett I, Hughes RC (1993) Secretion of the baby hamster kidney 30-kDa galactose-binding lectin from polarized and nonpolarized cells: a pathway independent of the endoplasmic reticulum-Golgi complex. Exp Cell Res 207:8–18

    Article  PubMed  CAS  Google Scholar 

  26. Sato S, Hughes RC (1994) Regulation of secretion and surface expression of Mac-2, a galactoside-binding protein of macrophages. J Biol Chem 269:4424–4430

    PubMed  CAS  Google Scholar 

  27. Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119

    Article  PubMed  CAS  Google Scholar 

  28. Jiang JX, Chen X, Hsu DK et al (2012) Galectin-3 modulates phagocytosis-induced stellate cell activation and liver fibrosis in vivo. Am J Physiol Gastrointest Liver Physiol 302:G439–G446

    Article  PubMed  CAS  Google Scholar 

  29. de Oliveira SA (2012) de Freitas Souza BS, Sa Barreto EP, et al. Reduction of galectin-3 expression and liver fibrosis after cell therapy in a mouse model of cirrhosis. Cytotherapy 14:339–349

    Article  PubMed  Google Scholar 

  30. Kolatsi-Joannou M, Price KL, Winyard PJ et al (2011) Modified citrus pectin reduces galectin-3 expression and disease severity in experimental acute kidney injury. PLoS One 6:e18683

    Article  PubMed  CAS  Google Scholar 

  31. Thandavarayan RA, Watanabe K, Ma M et al (2008) 14-3-3 protein regulates Ask1 signaling and protects against diabetic cardiomyopathy. Biochem Pharmacol 75:1797–1806

    Article  PubMed  CAS  Google Scholar 

  32. Kamal FA, Watanabe K, Ma M et al (2011) A novel phenylpyridazinone, T-3999, reduces the progression of autoimmune myocarditis to dilated cardiomyopathy. Heart Vessels 26:81–90

    Article  PubMed  Google Scholar 

  33. Psarras S, Mavroidis M, Sanoudou D et al (2011) Regulation of adverse remodelling by osteopontin in a genetic heart failure model. Eur Heart J 33:1954–1963

    Article  PubMed  Google Scholar 

  34. Wilker E, Yaffe MB (2004) 14–3–3 Proteins–a focus on cancer and human disease. J Mol Cell Cardiol 37:633–642

    Article  PubMed  CAS  Google Scholar 

  35. Banerjee A, Apte UM, Smith R et al (2006) Higher neutrophil infiltration mediated by osteopontin is a likely contributing factor to the increased susceptibility of females to alcoholic liver disease. J Pathol 208:473–485

    Article  PubMed  CAS  Google Scholar 

  36. Fisher AD (1992) Maxillofacial surgery should become a specialty of medicine. Br Dent J 172:46–47

    Article  PubMed  CAS  Google Scholar 

  37. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250

    Article  PubMed  CAS  Google Scholar 

  38. Brown RD, Ambler SK, Mitchell MD et al (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687

    Article  PubMed  CAS  Google Scholar 

  39. de Cavanagh EM, Ferder M, Inserra F et al (2009) Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. Am J Physiol Heart Circ Physiol 296:H550–H558

    Article  PubMed  Google Scholar 

  40. Krzeslak A, Lipinska A (2004) Galectin-3 as a multifunctional protein. Cell Mol Biol Lett 9:305–328

    PubMed  CAS  Google Scholar 

  41. Dvorankova B, Szabo P, Lacina L et al (2011) Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs 194:469–480

    Article  PubMed  CAS  Google Scholar 

  42. Henderson NC, Sethi T (2009) The regulation of inflammation by galectin-3. Immunol Rev 230:160–171

    Article  PubMed  CAS  Google Scholar 

  43. van Kimmenade RR, Januzzi JL Jr, Ellinor PT et al (2006) Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol 48:1217–1224

    Article  PubMed  Google Scholar 

  44. Shah RV, Chen-Tournoux AA, Picard MH et al (2010) Galectin-3, cardiac structure and ­function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail 12:826–832

    Article  PubMed  CAS  Google Scholar 

  45. Lin YH, Lin LY, Wu YW et al (2009) The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta 409:96–99

    Article  PubMed  CAS  Google Scholar 

  46. Lok DJ, Van Der Meer P, de la Porte PW et al (2010) Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol 99:323–328

    Article  PubMed  CAS  Google Scholar 

  47. de Boer RA, Lok DJ, Jaarsma T et al (2011) Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 43:60–68

    Article  PubMed  Google Scholar 

  48. Felker GM, Fiuzat M, Shaw LK et al (2012) Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail 5:72–78

    Article  PubMed  CAS  Google Scholar 

  49. de Boer RA, van Veldhuisen DJ, Gansevoort RT et al (2012) The fibrosis marker galectin-3 and outcome in the general population. J Intern Med 272:55–64

    PubMed  Google Scholar 

  50. Christenson RH, Duh SH, Wu AH et al (2010) Multi-center determination of galectin-3 assay performance characteristics: Anatomy of a novel assay for use in heart failure. Clin Biochem 43:683–690

    Article  PubMed  CAS  Google Scholar 

  51. Grandin EW, Jarolim P, Murphy SA et al (2012) Galectin-3 and the development of heart failure after acute coronary syndrome: pilot experience from PROVE IT-TIMI 22. Clin Chem 58:267–273

    Article  PubMed  CAS  Google Scholar 

  52. Kramer F, Milting H (2011) Novel biomarkers in human terminal heart failure and under mechanical circulatory support. Biomarkers 16(Suppl 1):S31–S41

    Article  PubMed  CAS  Google Scholar 

  53. de Boer RA, Voors AA, Muntendam P et al (2009) Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail 11:811–817

    Article  PubMed  Google Scholar 

  54. Yu L, Ruifrok WP, Sillje HHW et al (2011) Genetic disruption of galectin-3 prevents adverse cardiac remodeling. Eur Heart J 32(Abstract Supplement):1094

    Google Scholar 

  55. Yu L, Ruifrok WP, Sillje HHW et al (2011) Pharmacological inhibition of galectin-3 attenuates cardiac remodeling and heart failure. Eur Heart J 32(Abstract Supplement):1097

    Google Scholar 

  56. de Boer RA, Meissner M, van Veldhuisen DJ (2012) Galectin-3. In: Alan S Maisel (ed) Cardiac biomarkers: expert advice for clinicians, 1st edn. New Delhi, pp 193–207. ISBN 978-93-5025-564-3

    Google Scholar 

Download references

Acknowledgment

We thank Maxi Meissner, Ph.D., for her assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf A. de Boer M.D., Ph.D., F.E.S.C. .

Editor information

Editors and Affiliations

Additional information

Disclosures

BG Medicine Inc. (BGM, Waltham, MA, USA) holds certain rights with respect to the use of galectin-3 in heart failure. The UMCG, Department of Cardiology, which employs the authors, received research grants from BGM. Dr. de Boer received consultancy fees from BGM.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yu, L., de Boer, R.A. (2013). Role of Galectin-3 Pathways in the Pathogenesis of Cardiac Remodeling and Heart Failure. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_6

Download citation

Publish with us

Policies and ethics