Skip to main content

The Role of Complement in Tumor Growth

  • Conference paper
  • First Online:
Tumor Microenvironment and Cellular Stress

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 772))

Abstract

Complement is a central part of the immune system that has developed as a first defense against non-self cells. Neoplastic transformation is accompanied by an increased capacity of the malignant cells to activate complement. In fact, clinical data demonstrate complement activation in cancer patients. On the basis of the use of protective mechanisms by malignant cells, complement activation has traditionally been considered part of the body’s immunosurveillance against cancer. Inhibitory mechanisms of complement activation allow cancer cells to escape from complement-mediated elimination and hamper the clinical efficacy of monoclonal antibody–based cancer immunotherapies. To overcome this limitation, many strategies have been developed with the goal of improving complement-mediated effector mechanisms. However, significant work in recent years has identified new and surprising roles for complement activation within the tumor microenvironment. Recent reports suggest that complement elements can promote tumor growth in the context of chronic inflammation. This chapter reviews the data describing the role of complement activation in cancer immunity, which offers insights that may aid the development of more effective therapeutic approaches to control cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ, Spendlove I, Roversi P et al (2007) Structural and functional characterization of a novel T cell receptor co-regulatory protein complex, CD97-CD55. J Biol Chem 282(30):22023–22032

    PubMed  CAS  Google Scholar 

  • Ajona D, Castano Z, Garayoa M et al (2004) Expression of complement factor H by lung cancer cells: effects on the activation of the alternative pathway of complement. Cancer Res 64(17):6310–6318

    PubMed  CAS  Google Scholar 

  • Ajona D, Hsu YF, Corrales L et al (2007) Down-regulation of human complement factor H sensitizes non-small cell lung cancer cells to complement attack and reduces in vivo tumor growth. J Immunol 178(9):5991–5998

    PubMed  CAS  Google Scholar 

  • Albrecht EA, Chinnaiyan AM, Varambally S et al (2004) C5a-Induced gene expression in human umbilical vein endothelial cells. Am J Pathol 164(3):849–859

    PubMed  CAS  Google Scholar 

  • Amara U, Rittirsch D, Flierl M et al (2008) Interaction between the coagulation and complement system. Adv Exp Med Biol 632:71–79

    PubMed  CAS  Google Scholar 

  • Andoh A, Shimada M, Araki Y et al (2002) Sodium butyrate enhances complement-mediated cell injury via down-regulation of decay-accelerating factor expression in colonic cancer cells. Cancer Immunol Immunother 50(12):663–672

    PubMed  CAS  Google Scholar 

  • Aspord C, Pedroza-Gonzalez A, Gallegos M et al (2007) Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med 204(5):1037–1047

    PubMed  CAS  Google Scholar 

  • Baatrup G, Qvist N, Junker A et al (1994) Activity and activation of the complement system in patients being operated on for cancer of the colon. Eur J Surg 160(9):503–510

    PubMed  CAS  Google Scholar 

  • Badea TC, Niculescu FI, Soane L et al (1998) Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem 273(41):26977–26981

    PubMed  CAS  Google Scholar 

  • Badea T, Niculescu F, Soane L et al (2002) RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem 277(1):502–508

    PubMed  CAS  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay M, Rohrer B (2012) Matrix metalloproteinase activity creates pro-angiogenic environment in primary human retinal pigment epithelial cells exposed to complement. Invest Ophthalmol Vis Sci 53(4):1953–1961

    PubMed  CAS  Google Scholar 

  • Battistelli S, Vittoria A, Cappelli R et al (2005) Protein S in cancer patients with non-metastatic solid tumours. Eur J Surg Oncol 31(7):798–802

    PubMed  CAS  Google Scholar 

  • Bauer S, Groh V, Wu J et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285(5428):727–729

    PubMed  CAS  Google Scholar 

  • Bellone S, Roque D, Cocco E et al (2012) Down regulation of membrane complement inhibitors CD55 and CD59 by siRNA sensitises uterine serous carcinoma overexpressing Her2/neu to complement and antibody-dependent cell cytotoxicity in vitro: implications for Trastuzumab-based immunotherapy. Br J Cancer 106(9):1543–1550

    PubMed  CAS  Google Scholar 

  • Benard M, Gonzalez BJ, Schouft MT et al (2004) Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation. Neuroprotective effect of C5a against apoptotic cell death. J Biol Chem 279(42):43487–43496

    PubMed  CAS  Google Scholar 

  • Beum PV, Lindorfer MA, Beurskens F et al (2008) Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis. J Immunol 181(1):822–832

    PubMed  CAS  Google Scholar 

  • Beurskens FJ, Lindorfer MA, Farooqui M et al (2012) Exhaustion of cytotoxic effector systems may limit monoclonal antibody-based immunotherapy in cancer patients. J Immunol 188(7):3532–3541

    PubMed  CAS  Google Scholar 

  • Bexborn F, Andersson PO, Chen H et al (2008) The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)Bb). Mol Immunol 45(8):2370–2379

    PubMed  CAS  Google Scholar 

  • Bjorge L, Hakulinen J, Vintermyr OK et al (2005) Ascitic complement system in ovarian cancer. Br J Cancer 92(5):895–905

    PubMed  CAS  Google Scholar 

  • Blok VT, Gelderman KA, Tijsma OH et al (2003) Cytokines affect resistance of human renal tumour cells to complement-mediated injury. Scand J Immunol 57(6):591–599

    PubMed  CAS  Google Scholar 

  • Blom AM, Villoutreix BO, Dahlback B (2004) Complement inhibitor C4b-binding protein-friend or foe in the innate immune system? Mol Immunol 40(18):1333–1346

    PubMed  CAS  Google Scholar 

  • Bohana-Kashtan O, Pinna LA, Fishelson Z (2005) Extracellular phosphorylation of C9 by protein kinase CK2 regulates complement-mediated lysis. Eur J Immunol 35(6):1939–1948

    PubMed  CAS  Google Scholar 

  • Boon T, Coulie PG, Van den Eynde B (1997) Tumor antigens recognized by T cells. Immunol Today 18(6):267–268

    PubMed  CAS  Google Scholar 

  • Bora PS, Sohn JH, Cruz JM et al (2005) Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization. J Immunol 174(1):491–497

    PubMed  CAS  Google Scholar 

  • Boulay F, Mery L, Tardif M et al (1991) Expression cloning of a receptor for C5a anaphylatoxin on differentiated HL-60 cells. Biochemistry 30(12):2993–2999

    PubMed  CAS  Google Scholar 

  • Brasoveanu LI, Altomonte M, Fonsatti E et al (1996) Levels of cell membrane CD59 regulate the extent of complement-mediated lysis of human melanoma cells. Lab Invest 74(1):33–42

    PubMed  CAS  Google Scholar 

  • Brasoveanu LI, Fonsatti E, Visintin A et al (1997) Melanoma cells constitutively release an anchor-positive soluble form of protectin (sCD59) that retains functional activities in homologous complement-mediated cytotoxicity. J Clin Invest 100(5):1248–1255

    PubMed  CAS  Google Scholar 

  • Bu X, Zheng Z, Wang C et al (2007) Significance of C4d deposition in the follicular lymphoma and MALT lymphoma and their relationship with follicular dendritic cells. Pathol Res Pract 203(3):163–167

    PubMed  Google Scholar 

  • Budzko DB, Lachmann PJ, McConnell I (1976) Activation of the alternative complement pathway by lymphoblastoid cell lines derived from patients with Burkitt's lymphoma and infectious mononucleosis. Cell Immunol 22(1):98–109

    PubMed  CAS  Google Scholar 

  • Buo L, Karlsrud TS, Dyrhaug G et al (1993) Differential diagnosis of human ascites: inhibitors of the contact system and total proteins. Scand J Gastroenterol 28(9):777–782

    PubMed  CAS  Google Scholar 

  • Cardarelli PM, Quinn M, Buckman D et al (2002) Binding to CD20 by anti-B1 antibody or F(ab')(2) is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol Immunother 51(1):15–24

    PubMed  CAS  Google Scholar 

  • Carli M, Bucolo C, Pannunzio MT et al (1979) Fluctuation of serum complement levels in children with neuroblastoma. Cancer 43(6):2399–2404

    PubMed  CAS  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    PubMed  CAS  Google Scholar 

  • Carney DF, Lang TJ, Shin ML (1990) Multiple signal messengers generated by terminal complement complexes and their role in terminal complement complex elimination. J Immunol 145(2):623–629

    PubMed  CAS  Google Scholar 

  • Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    PubMed  CAS  Google Scholar 

  • Chen S, Caragine T, Cheung NK et al (2000) CD59 expressed on a tumor cell surface modulates decay-accelerating factor expression and enhances tumor growth in a rat model of human neuroblastoma. Cancer Res 60(11):3013–3018

    PubMed  CAS  Google Scholar 

  • Chen NJ, Mirtsos C, Suh D et al (2007) C5L2 Is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446(7132):203–207

    PubMed  CAS  Google Scholar 

  • Cheng ZZ, Corey MJ, Parepalo M et al (2005) Complement factor H as a marker for detection of bladder cancer. Clin Chem 51(5):856–863

    PubMed  CAS  Google Scholar 

  • Cole DS, Morgan BP (2003) Beyond lysis: how complement influences cell fate. Clin Sci (Lond) 104(5):455–466

    CAS  Google Scholar 

  • Colotta F, Allavena P, Sica A et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081

    PubMed  CAS  Google Scholar 

  • Coral S, Fonsatti E, Sigalotti L et al (2000) Overexpression of protectin (CD59) down-modulates the susceptibility of human melanoma cells to homologous complement. J Cell Physiol 185(3):317–323

    PubMed  CAS  Google Scholar 

  • Corey MJ, Kinders RJ, Brown LG et al (1997) A very sensitive coupled luminescent assay for cytotoxicity and complement-mediated lysis. J Immunol Methods 207(1):43–51

    PubMed  CAS  Google Scholar 

  • Corrales L, Ajona D, Rafail S et al (2012) Anaphylatoxin c5a creates a favorable microenvironment for lung cancer progression. J Immunol 189(9):4674–4683

    PubMed  CAS  Google Scholar 

  • Costello LC, Franklin RB (2005) ‘Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Mol Cell Biochem 280(1–2):1–8

    PubMed  CAS  Google Scholar 

  • Cragg MS, Glennie MJ (2004) Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103(7):2738–2743

    PubMed  CAS  Google Scholar 

  • Cui T, Chen Y, Knosel T et al (2011) Human complement factor H is a novel diagnostic marker for lung adenocarcinoma. Int J Oncol 39(1):161–168

    PubMed  CAS  Google Scholar 

  • Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949

    PubMed  CAS  Google Scholar 

  • Davis AE 3rd, Mejia P, Lu F (2008) Biological activities of C1 inhibitor. Mol Immunol 45(16):4057–4063

    PubMed  CAS  Google Scholar 

  • de Cordoba SR, de Jorge EG (2008) Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin Exp Immunol 151(1):1–13

    PubMed  Google Scholar 

  • Di Gaetano N, Xiao Y, Erba E et al (2001) Synergism between fludarabine and rituximab revealed in a follicular lymphoma cell line resistant to the cytotoxic activity of either drug alone. Br J Haematol 114(4):800–809

    PubMed  Google Scholar 

  • Di Gaetano N, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171(3):1581–1587

    PubMed  Google Scholar 

  • Donin N, Jurianz K, Ziporen L et al (2003) Complement resistance of human carcinoma cells depends on membrane regulatory proteins, protein kinases and sialic acid. Clin Exp Immunol 131(2):254–263

    PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004a) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004b) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148

    PubMed  CAS  Google Scholar 

  • DuPage M, Mazumdar C, Schmidt LM et al (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482(7385):405–409

    PubMed  CAS  Google Scholar 

  • Durrant LG, Chapman MA, Buckley DJ et al (2003) Enhanced expression of the complement regulatory protein CD55 predicts a poor prognosis in colorectal cancer patients. Cancer Immunol Immunother 52(10):638–642

    PubMed  CAS  Google Scholar 

  • Elvington M, Huang Y, Morgan BP et al (2012) A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer. Blood 119(25):6043–6051

    PubMed  CAS  Google Scholar 

  • Falgarone G, Chiocchia G (2009) Chapter 8: clusterin: a multifacet protein at the crossroad of inflammation and autoimmunity. Adv Cancer Res 104:139–170

    PubMed  CAS  Google Scholar 

  • Fearon DT (1979) Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci U S A 76(11):5867–5871

    PubMed  CAS  Google Scholar 

  • Fearon DT, Carter RH (1995) The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu Rev Immunol 13:127–149

    PubMed  CAS  Google Scholar 

  • Fedarko NS, Fohr B, Robey PG et al (2000) Factor H binding to bone sialoprotein and osteopontin enables tumor cell evasion of complement-mediated attack. J Biol Chem 275(22):16666–16672

    PubMed  CAS  Google Scholar 

  • Fischer E, Appay MD, Cook J et al (1986) Characterization of the human glomerular C3 receptor as the C3b/C4b complement type one (CR1) receptor. J Immunol 136(4):1373–1377

    PubMed  CAS  Google Scholar 

  • Fishelson Z, Donin N, Zell S et al (2003) Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 40(2–4):109–123

    PubMed  CAS  Google Scholar 

  • Fosbrink M, Cudrici C, Niculescu F et al (2005) Overexpression of RGC-32 in colon cancer and other tumors. Exp Mol Pathol 78(2):116–122

    PubMed  CAS  Google Scholar 

  • Frade R, Rodrigues-Lima F, Huang S et al (1998) Procathepsin-L, a proteinase that cleaves human C3 (the third component of complement), confers high tumorigenic and metastatic properties to human melanoma cells. Cancer Res 58(13):2733–2736

    PubMed  CAS  Google Scholar 

  • Fridman WH, Pages F, Sautes-Fridman C et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    PubMed  CAS  Google Scholar 

  • Fust G, Miszlay Z, Czink E et al (1987) C1 and C4 abnormalities in chronic lymphocytic leukaemia and their significance. Immunol Lett 14(3):255–259

    PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    PubMed  CAS  Google Scholar 

  • Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    PubMed  CAS  Google Scholar 

  • Gancz D, Fishelson Z (2009) Cancer resistance to complement-dependent cytotoxicity (CDC): problem-oriented research and development. Mol Immunol 46(14):2794–2800

    PubMed  CAS  Google Scholar 

  • Gao LJ, Guo SY, Cai YQ et al (2009) Cooperation of decay-accelerating factor and membrane cofactor protein in regulating survival of human cervical cancer cells. BMC Cancer 9:384

    PubMed  Google Scholar 

  • Gasque P, Thomas A, Fontaine M et al (1996) Complement activation on human neuroblastoma cell lines in vitro: route of activation and expression of functional complement regulatory proteins. J Neuroimmunol 66(1–2):29–40

    PubMed  CAS  Google Scholar 

  • Geis N, Zell S, Rutz R et al (2010) Inhibition of membrane complement inhibitor expression (CD46, CD55, CD59) by siRNA sensitizes tumor cells to complement attack in vitro. Curr Cancer Drug Targets 10(8):922–931

    PubMed  CAS  Google Scholar 

  • Gelderman KA, Blok VT, Fleuren GJ et al (2002a) The inhibitory effect of CD46, CD55, and CD59 on complement activation after immunotherapeutic treatment of cervical carcinoma cells with monoclonal antibodies or bispecific monoclonal antibodies. Lab Invest 82(4):483–493

    PubMed  CAS  Google Scholar 

  • Gelderman KA, Kuppen PJ, Bruin W et al (2002b) Enhancement of the complement activating capacity of 17-1A mAb to overcome the effect of membrane-bound complement regulatory proteins on colorectal carcinoma. Eur J Immunol 32(1):128–135

    PubMed  CAS  Google Scholar 

  • Gelderman KA, Kuppen PJ, Okada N et al (2004a) Tumor-specific inhibition of membrane-bound complement regulatory protein crry with bispecific monoclonal antibodies prevents tumor outgrowth in a rat colorectal cancer lung metastases model. Cancer Res 64(12):4366–4372

    PubMed  CAS  Google Scholar 

  • Gelderman KA, Tomlinson S, Ross GD et al (2004b) Complement function in mAb-mediated cancer immunotherapy. Trends Immunol 25(3):158–164

    PubMed  CAS  Google Scholar 

  • Gelderman KA, Lam S, Gorter A (2005) Inhibiting complement regulators in cancer immunotherapy with bispecific mAbs. Expert Opin Biol Ther 5(12):1593–1601

    PubMed  CAS  Google Scholar 

  • Ghiran I, Barbashov SF, Klickstein LB et al (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med 192(12):1797–1808

    PubMed  CAS  Google Scholar 

  • Girardi G, Yarilin D, Thurman JM et al (2006) Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 203(9):2165–2175

    PubMed  CAS  Google Scholar 

  • Glunde K, Serkova NJ (2006) Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics 7(7):1109–1123

    PubMed  CAS  Google Scholar 

  • Gminski J, Mykala-Ciesla J, Machalski M et al (1992) Immunoglobulins and complement components levels in patients with lung cancer. Rom J Intern Med 30(1):39–44

    PubMed  CAS  Google Scholar 

  • Golay J, Zaffaroni L, Vaccari T et al (2000) Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 95(12):3900–3908

    PubMed  CAS  Google Scholar 

  • Gonzalez JM, Franzke CW, Yang F et al (2011) Complement activation triggers metalloproteinases release inducing cervical remodeling and preterm birth in mice. Am J Pathol 179(2):838–849

    PubMed  CAS  Google Scholar 

  • Gorter A, Meri S (1999) Immune evasion of tumor cells using membrane-bound complement regulatory proteins. Immunol Today 20(12):576–582

    PubMed  CAS  Google Scholar 

  • Governa M, Fenoglio I, Amati M et al (2002) Cleavage of the fifth component of human complement and release of a split product with C5a-like activity by crystalline silica through free radical generation and kallikrein activation. Toxicol Appl Pharmacol 179(3):129–136

    PubMed  CAS  Google Scholar 

  • Griffin JL, Kauppinen RA (2007) Tumour metabolomics in animal models of human cancer. J Proteome Res 6(2):498–505

    PubMed  CAS  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    PubMed  CAS  Google Scholar 

  • Guidi L, Baroni R, Bartoloni C et al (1988) Immune complexes in solid tumours precipitable by 3.5% Polyethylene glycol: analysis of some nonspecific components. Diagn Clin Immunol 5(6):284–288

    PubMed  CAS  Google Scholar 

  • Gunn L, Ding C, Liu M et al (2012) Opposing roles for complement component C5a in tumor progression and the tumor microenvironment. J Immunol 189(6):2985–2994

    PubMed  CAS  Google Scholar 

  • Haas PJ, van Strijp J (2007) Anaphylatoxins: their role in bacterial infection and inflammation. Immunol Res 37(3):161–175

    PubMed  CAS  Google Scholar 

  • Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A 99(16):10231–10233

    PubMed  CAS  Google Scholar 

  • Hakulinen J, Junnikkala S, Sorsa T et al (2004) Complement inhibitor membrane cofactor protein (MCP; CD46) is constitutively shed from cancer cell membranes in vesicles and converted by a metalloproteinase to a functionally active soluble form. Eur J Immunol 34(9):2620–2629

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    PubMed  CAS  Google Scholar 

  • Hawrylowicz CM, O’Garra A (2005) Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 5(4):271–283

    PubMed  CAS  Google Scholar 

  • He JQ, Wiesmann C, van Lookeren CM (2008) A role of macrophage complement receptor CRIg in immune clearance and inflammation. Mol Immunol 45(16):4041–4047

    PubMed  CAS  Google Scholar 

  • Helmy KY, Katschke KJ Jr, Gorgani NN et al (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124(5):915–927

    PubMed  CAS  Google Scholar 

  • Hindmarsh EJ, Marks RM (1998) Decay-accelerating factor is a component of subendothelial extracellular matrix in vitro, and is augmented by activation of endothelial protein kinase C. Eur J Immunol 28(3):1052–1062

    PubMed  CAS  Google Scholar 

  • Holliger P, Wing M, Pound JD et al (1997) Retargeting serum immunoglobulin with bispecific diabodies. Nat Biotechnol 15(7):632–636

    PubMed  CAS  Google Scholar 

  • Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4(1):45–60

    PubMed  CAS  Google Scholar 

  • Holmberg MT, Blom AM, Meri S (2001) Regulation of complement classical pathway by association of C4b-binding protein to the surfaces of SK-OV-3 and caov-3 ovarian adenocarcinoma cells. J Immunol 167(2):935–939

    PubMed  CAS  Google Scholar 

  • Hourcade DE (2008) Properdin and complement activation: a fresh perspective. Curr Drug Targets 9(2):158–164

    PubMed  CAS  Google Scholar 

  • Hsu YF, Ajona D, Corrales L et al (2010) Complement activation mediates cetuximab inhibition of non-small cell lung cancer tumor growth in vivo. Mol Cancer 9:139

    PubMed  Google Scholar 

  • Huber-Lang M, Younkin EM, Sarma JV et al (2002) Generation of C5a by phagocytic cells. Am J Pathol 161(5):1849–1859

    PubMed  CAS  Google Scholar 

  • Huber-Lang M, Sarma JV, Zetoune FS et al (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12(6):682–687

    PubMed  CAS  Google Scholar 

  • Jain A, Karadag A, Fohr B et al (2002) Three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) enhance factor H's cofactor activity enabling MCP-like cellular evasion of complement-mediated attack. J Biol Chem 277(16):13700–13708

    PubMed  CAS  Google Scholar 

  • Jarvis GA, Li J, Hakulinen J et al (1997) Expression and function of the complement membrane attack complex inhibitor protectin (CD59) in human prostate cancer. Int J Cancer 71(6):1049–1055

    PubMed  CAS  Google Scholar 

  • Jenne DE, Tschopp J (1989) Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: identity to sulfated glycoprotein 2, a constituent of rat testis fluid. Proc Natl Acad Sci U S A 86(18):7123–7127

    PubMed  CAS  Google Scholar 

  • Jiang H, Cooper B, Robey FA et al (1992) DNA binds and activates complement via residues 14–26 of the human C1q a chain. J Biol Chem 267(35):25597–25601

    PubMed  CAS  Google Scholar 

  • Jozsi M, Zipfel PF (2008) Factor H family proteins and human diseases. Trends Immunol 29(8):380–387

    PubMed  CAS  Google Scholar 

  • Juhl H, Petrella EC, Cheung NK et al (1990) Complement killing of human Neuroblastoma cells: a cytotoxic monoclonal antibody and its F(ab')2-cobra venom factor conjugate are equally cytotoxic. Mol Immunol 27(10):957–964

    PubMed  CAS  Google Scholar 

  • Juhl H, Sievers M, Baltzer K et al (1995) A monoclonal antibody-cobra venom factor conjugate increases the tumor-specific uptake of a 99mTc-labeled anti-carcinoembryonic antigen antibody by a two-step approach. Cancer Res 55(23 Suppl):5749s–5755s

    PubMed  CAS  Google Scholar 

  • Juhl H, Petrella EC, Cheung NK et al (1997) Additive cytotoxicity of different monoclonal antibody-cobra venom factor conjugates for human Neuroblastoma cells. Immunobiology 197(5):444–459

    PubMed  CAS  Google Scholar 

  • Junnikkala S, Jokiranta TS, Friese MA et al (2000) Exceptional resistance of human H2 glioblastoma cells to complement-mediated killing by expression and utilization of factor H and factor H-like protein 1. J Immunol 164(11):6075–6081

    PubMed  CAS  Google Scholar 

  • Junnikkala S, Hakulinen J, Jarva H et al (2002) Secretion of soluble complement inhibitors factor H and factor H-like protein (FHL-1) by ovarian tumour cells. Br J Cancer 87(10):1119–1127

    PubMed  CAS  Google Scholar 

  • Jurianz K, Ziegler S, Garcia-Schuler H et al (1999) Complement resistance of tumor cells: basal and induced mechanisms. Mol Immunol 36(13–14):929–939

    PubMed  CAS  Google Scholar 

  • Jurianz K, Ziegler S, Donin N et al (2001) K562 Erythroleukemic cells are equipped with multiple mechanisms of resistance to lysis by complement. Int J Cancer 93(6):848–854

    PubMed  CAS  Google Scholar 

  • Kalwinsky DK, Urmson JR, Stitzel AE et al (1976) Activation of the alternative pathway of complement in childhood acute lymphoblastic leukemia. J Lab Clin Med 88(5):745–756

    PubMed  CAS  Google Scholar 

  • Karre K, Ljunggren HG, Piontek G et al (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319(6055):675–678

    PubMed  CAS  Google Scholar 

  • Kataki A, Scheid P, Piet M et al (2002) Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host-defense and tumor progression. J Lab Clin Med 140(5):320–328

    PubMed  Google Scholar 

  • Kawada M, Mizuno M, Nasu J et al (2003) Release of decay-accelerating factor into stools of patients with colorectal cancer by means of cleavage at the site of glycosylphosphatidylinositol anchor. J Lab Clin Med 142(5):306–312

    PubMed  CAS  Google Scholar 

  • Kemper C, Chan AC, Green JM et al (2003) Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421(6921):388–392

    PubMed  CAS  Google Scholar 

  • Kennedy AD, Solga MD, Schuman TA et al (2003) An anti-C3b(i) mAb enhances complement activation, C3b(i) deposition, and killing of CD20+ cells by rituximab. Blood 101(3):1071–1079

    PubMed  CAS  Google Scholar 

  • Kim SH, Carney DF, Hammer CH et al (1987) Nucleated cell killing by complement: effects of C5b-9 channel size and extracellular Ca2+ on the lytic process. J Immunol 138(5):1530–1536

    PubMed  CAS  Google Scholar 

  • Kim R, Emi M, Tanabe K et al (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66(11):5527–5536

    PubMed  CAS  Google Scholar 

  • Kimberley FC, Sivasankar B, Paul Morgan B (2007) Alternative roles for CD59. Mol Immunol 44(1–3):73–81

    PubMed  CAS  Google Scholar 

  • Kinders R, Jones T, Root R et al (1998) Complement factor H or a related protein is a marker for transitional cell cancer of the bladder. Clin Cancer Res 4(10):2511–2520

    PubMed  CAS  Google Scholar 

  • Kirkitadze MD, Barlow PN (2001) Structure and flexibility of the multiple domain proteins that regulate complement activation. Immunol Rev 180:146–161

    PubMed  CAS  Google Scholar 

  • Klickstein LB, Barbashov SF, Liu T et al (1997) Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7(3):345–355

    PubMed  CAS  Google Scholar 

  • Kohl J (2001) Anaphylatoxins and infectious and non-infectious inflammatory diseases. Mol Immunol 38(2–3):175–187

    PubMed  CAS  Google Scholar 

  • Kohno H, Mizuno M, Nasu J et al (2005) Stool decay-accelerating factor as a marker for monitoring the disease activity during leukocyte apheresis therapy in patients with refractory ulcerative colitis. J Gastroenterol Hepatol 20(1):73–78

    PubMed  Google Scholar 

  • Kojouharova M, Reid K, Gadjeva M (2010) New insights into the molecular mechanisms of classical complement activation. Mol Immunol 47(13):2154–2160

    PubMed  CAS  Google Scholar 

  • Kolev M, Towner L, Donev R (2011) Complement in cancer and cancer immunotherapy. Arch Immunol Ther Exp (Warsz) 59(6):407–419

    CAS  Google Scholar 

  • Kraus S, Seger R, Fishelson Z (2001) Involvement of the ERK mitogen-activated protein kinase in cell resistance to complement-mediated lysis. Clin Exp Immunol 123(3):366–374

    PubMed  CAS  Google Scholar 

  • Kraut EH, Sagone AL Jr (1981) Alternative pathway of complement in multiple myeloma. Am J Hematol 11(4):335–345

    PubMed  CAS  Google Scholar 

  • Krych-Goldberg M, Atkinson JP (2001) Structure-function relationships of complement receptor type 1. Immunol Rev 180:112–122

    PubMed  CAS  Google Scholar 

  • Laghi L, Bianchi P, Miranda E et al (2009) CD3+ Cells at the invasive margin of deeply invading (pT3-T4) colorectal cancer and risk of post-surgical metastasis: a longitudinal study. Lancet Oncol 10(9):877–884

    PubMed  CAS  Google Scholar 

  • Langer HF, Chung KJ, Orlova VV et al (2010) Complement-mediated inhibition of neovascularization reveals a point of convergence between innate immunity and angiogenesis. Blood 116(22):4395–4403

    PubMed  CAS  Google Scholar 

  • Law SK, Dodds AW (1997) The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci 6(2):263–274

    PubMed  CAS  Google Scholar 

  • Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612

    PubMed  CAS  Google Scholar 

  • Li L, Spendlove I, Morgan J et al (2001) CD55 is over-expressed in the tumour environment. Br J Cancer 84(1):80–86

    PubMed  CAS  Google Scholar 

  • Liszewski MK, Post TW, Atkinson JP (1991) Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol 9:431–455

    PubMed  CAS  Google Scholar 

  • Liu J, Miwa T, Hilliard B et al (2005) The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J Exp Med 201(4):567–577

    PubMed  CAS  Google Scholar 

  • Liu L, Li W, Li Z et al (2012) Sublytic complement protects prostate cancer cells from tumour necrosis factor-alpha-induced cell death. Clin Exp Immunol 169(2):100–108

    PubMed  CAS  Google Scholar 

  • Livingston PO, Hood C, Krug LM et al (2005) Selection of GM2, fucosyl GM1, globo H and polysialic acid as targets on small cell lung cancers for antibody mediated immunotherapy. Cancer Immunol Immunother 54(10):1018–1025

    PubMed  CAS  Google Scholar 

  • Loberg RD, Wojno KJ, Day LL et al (2005) Analysis of membrane-bound complement regulatory proteins in prostate cancer. Urology 66(6):1321–1326

    PubMed  Google Scholar 

  • Lublin DM, Atkinson JP (1989) Decay-accelerating factor: biochemistry, molecular biology, and function. Annu Rev Immunol 7:35–58

    PubMed  CAS  Google Scholar 

  • Lucas SD, Karlsson-Parra A, Nilsson B et al (1996) Tumor-specific deposition of immunoglobulin G and complement in papillary thyroid carcinoma. Hum Pathol 27(12):1329–1335

    PubMed  CAS  Google Scholar 

  • Macor P, Tedesco F (2007) Complement as effector system in cancer immunotherapy. Immunol Lett 111(1):6–13

    PubMed  CAS  Google Scholar 

  • Macor P, Mezzanzanica D, Cossetti C et al (2006) Complement activated by chimeric anti-folate receptor antibodies is an efficient effector system to control ovarian carcinoma. Cancer Res 66(7):3876–3883

    PubMed  CAS  Google Scholar 

  • Madjd Z, Durrant LG, Bradley R et al (2004) Loss of CD55 is associated with aggressive breast tumors. Clin Cancer Res 10(8):2797–2803

    PubMed  CAS  Google Scholar 

  • Madjd Z, Durrant LG, Pinder SE et al (2005) Do poor-prognosis breast tumours express membrane cofactor proteins (CD46)? Cancer Immunol Immunother 54(2):149–156

    PubMed  CAS  Google Scholar 

  • Maness PF, Orengo A (1977) Serum complement levels in patients with digestive tract carcinomas and other neoplastic diseases. Oncology 34(2):87–89

    PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444

    PubMed  CAS  Google Scholar 

  • Marie JC, Astier AL, Rivailler P et al (2002) Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 3(7):659–666

    PubMed  CAS  Google Scholar 

  • Markiewski MM, Nilsson B, Ekdahl KN et al (2007) Complement and coagulation: strangers or partners in crime? Trends Immunol 28(4):184–192

    PubMed  CAS  Google Scholar 

  • Markiewski MM, DeAngelis RA, Benencia F et al (2008) Modulation of the antitumor immune response by complement. Nat Immunol 9(11):1225–1235

    PubMed  CAS  Google Scholar 

  • Markiewski MM, DeAngelis RA, Strey CW et al (2009) The regulation of liver cell survival by complement. J Immunol 182(9):5412–5418

    PubMed  CAS  Google Scholar 

  • Matsushita M, Thiel S, Jensenius JC et al (2000) Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J Immunol 165(5):2637–2642

    PubMed  CAS  Google Scholar 

  • Matsushita H, Vesely MD, Koboldt DC et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404

    PubMed  CAS  Google Scholar 

  • Matsutani M, Suzuki T, Hori T et al (1984) Cellular immunity and complement levels in hosts with brain tumours. Neurosurg Rev 7(1):29–35

    PubMed  CAS  Google Scholar 

  • McConnell I, Klein G, Lint TF et al (1978) Activation of the alternative complement pathway by human B cell lymphoma lines is associated with Epstein-Barr virus transformation of the cells. Eur J Immunol 8(7):453–458

    PubMed  CAS  Google Scholar 

  • McGrath FD, Brouwer MC, Arlaud GJ et al (2006) Evidence that complement protein C1q interacts with C-reactive protein through its globular head region. J Immunol 176(5):2950–2957

    PubMed  CAS  Google Scholar 

  • McMullen ME, Hart ML, Walsh MC et al (2006) Mannose-binding lectin binds IgM to activate the lectin complement pathway in vitro and in vivo. Immunobiology 211(10):759–766

    PubMed  CAS  Google Scholar 

  • Medof ME, Walter EI, Rutgers JL et al (1987) Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med 165(3):848–864

    PubMed  CAS  Google Scholar 

  • Meri S, Morgan BP, Davies A et al (1990) Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 71(1):1–9

    PubMed  CAS  Google Scholar 

  • Michlmayr A, Bachleitner-Hofmann T, Baumann S et al (2011) Modulation of plasma complement by the initial dose of Epirubicin/docetaxel therapy in breast cancer and its predictive value. Br J Cancer 103(8):1201–1208

    Google Scholar 

  • Mitchell DA, Kirby L, Paulin SM et al (2007) Prion protein activates and fixes complement directly via the classical pathway: implications for the mechanism of scrapie agent propagation in lymphoid tissue. Mol Immunol 44(11):2997–3004

    PubMed  CAS  Google Scholar 

  • Miyagi T, Takahashi K, Moriya S et al (2012) Altered expression of sialidases in human cancer. Adv Exp Med Biol 749:257–267

    PubMed  CAS  Google Scholar 

  • Montuenga LM, Pio R (2007) Tumour-associated macrophages in nonsmall cell lung cancer: the role of interleukin-10. Eur Respir J 30(4):608–610

    PubMed  CAS  Google Scholar 

  • Moore GL, Chen H, Karki S et al (2010) Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. MAbs 2(2):181–189

    PubMed  Google Scholar 

  • Morgan BP (1989) Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J 264(1):1–14

    PubMed  CAS  Google Scholar 

  • Morgan BP (1992) Effects of the membrane attack complex of complement on nucleated cells. Curr Top Microbiol Immunol 178:115–140

    PubMed  CAS  Google Scholar 

  • Morgan BP (1999) Regulation of the complement membrane attack pathway. Crit Rev Immunol 19(3):173–198

    PubMed  CAS  Google Scholar 

  • Morgan J, Spendlove I, Durrant LG (2002) The role of CD55 in protecting the tumour environment from complement attack. Tissue Antigens 60(3):213–223

    PubMed  CAS  Google Scholar 

  • Morris KM, Aden DP, Knowles BB et al (1982) Complement biosynthesis by the human hepatoma-derived cell line HepG2. J Clin Invest 70(4):906–913

    PubMed  CAS  Google Scholar 

  • Moskovich O, Fishelson Z (2007) Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex. J Biol Chem 282(41):29977–29986

    PubMed  CAS  Google Scholar 

  • Mukherjee P, Pasinetti GM (2001) Complement anaphylatoxin C5a neuroprotects through mitogen-activated protein kinase-dependent inhibition of caspase 3. J Neurochem 77(1):43–49

    PubMed  CAS  Google Scholar 

  • Mukherjee P, Thomas S, Pasinetti GM (2008) Complement anaphylatoxin C5a neuroprotects through regulation of glutamate receptor subunit 2 in vitro and in vivo. J Neuroinflammation 5:5

    PubMed  Google Scholar 

  • Mustafa T, Klonisch T, Hombach-Klonisch S et al (2004) Expression of CD97 and CD55 in human medullary thyroid carcinomas. Int J Oncol 24(2):285–294

    PubMed  CAS  Google Scholar 

  • Nagajothi N, Matsui WH, Mukhina GL et al (2004) Enhanced cytotoxicity of rituximab following genetic and biochemical disruption of glycosylphosphatidylinositol anchored proteins. Leuk Lymphoma 45(4):795–799

    PubMed  CAS  Google Scholar 

  • Nasu J, Mizuno M, Uesu T et al (1998) Cytokine-stimulated release of decay-accelerating factor (DAF;CD55) from HT-29 human intestinal epithelial cells. Clin Exp Immunol 113(3):379–385

    PubMed  CAS  Google Scholar 

  • Nauta AJ, Trouw LA, Daha MR et al (2002) Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol 32(6):1726–1736

    PubMed  CAS  Google Scholar 

  • Niculescu F, Rus HG, Retegan M et al (1992) Persistent complement activation on tumor cells in breast cancer. Am J Pathol 140(5):1039–1043

    PubMed  CAS  Google Scholar 

  • Niculescu F, Rus H, van Biesen T et al (1997) Activation of Ras and mitogen-activated protein kinase pathway by terminal complement complexes is G protein dependent. J Immunol 158(9):4405–4412

    PubMed  CAS  Google Scholar 

  • Niculescu F, Badea T, Rus H (1999) Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis 142(1):47–56

    PubMed  CAS  Google Scholar 

  • Niehans GA, Cherwitz DL, Staley NA et al (1996) Human carcinomas variably express the complement inhibitory proteins CD46 (membrane cofactor protein), CD55 (decay-accelerating factor), and CD59 (protectin). Am J Pathol 149(1):129–142

    PubMed  CAS  Google Scholar 

  • Nishioka K, Kawamura K, Hirayama T et al (1976) The complement system in tumor immunity: significance of elevated levels of complement in tumor bearing hosts. Ann N Y Acad Sci 276:303–315

    PubMed  CAS  Google Scholar 

  • Nolte-’t Hoen EN, Almeida CR, Cohen NR et al (2007) Increased surveillance of cells in mitosis by human NK cells suggests a novel strategy for limiting tumor growth and viral replication. Blood 109(2):670–673

    PubMed  Google Scholar 

  • Nozaki M, Raisler BJ, Sakurai E et al (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 103(7):2328–2333

    PubMed  CAS  Google Scholar 

  • Nunez-Cruz S, Gimotty PA, Guerra MW et al (2012) Genetic and pharmacologic inhibition of complement impairs endothelial cell function and ablates ovarian cancer neovascularization. Neoplasia 14(11):994–1004

    PubMed  CAS  Google Scholar 

  • Ohno M, Hirata T, Enomoto M et al (2000) A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol Immunol 37(8):407–412

    PubMed  CAS  Google Scholar 

  • Okroj M, Hsu YF, Ajona D et al (2008) Non-small cell lung cancer cells produce a functional set of complement factor I and its soluble cofactors. Mol Immunol 45(1):169–179

    PubMed  CAS  Google Scholar 

  • Okroj M, Corrales L, Stokowska A et al (2009) Hypoxia increases susceptibility of non-small cell lung cancer cells to complement attack. Cancer Immunol Immunother 58(11):1771–1780

    PubMed  CAS  Google Scholar 

  • Ollert MW, Frade R, Fiandino A et al (1990) C3-Cleaving membrane proteinase. A new complement regulatory protein of human melanoma cells. J Immunol 144(10):3862–3867

    PubMed  CAS  Google Scholar 

  • Ollert MW, David K, Bredehorst R et al (1995) Classical complement pathway activation on nucleated cells. Role of factor H in the control of deposited C3b. J Immunol 155(10):4955–4962

    PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506

    PubMed  CAS  Google Scholar 

  • Paas Y, Bohana-Kashtan O, Fishelson Z (1999) Phosphorylation of the complement component, C9, by an ecto-protein kinase of human leukemic cells. Immunopharmacology 42(1–3):175–185

    PubMed  CAS  Google Scholar 

  • Pangburn MK, Rawal N (2002) Structure and function of complement C5 convertase enzymes. Biochem Soc Trans 30(Pt 6):1006–1010

    PubMed  CAS  Google Scholar 

  • Pangburn MK, Schreiber RD, Muller-Eberhard HJ (1981) Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med 154(3):856–867

    PubMed  CAS  Google Scholar 

  • Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839

    PubMed  CAS  Google Scholar 

  • Peterson AC, Harlin H, Gajewski TF (2003) Immunization with melan-a peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J Clin Oncol 21(12):2342–2348

    PubMed  CAS  Google Scholar 

  • Podack ER, Muller-Eberhard HJ (1979) Isolation of human S-protein, an inhibitor of the membrane attack complex of complement. J Biol Chem 254(19):9808–9814

    PubMed  CAS  Google Scholar 

  • Quatromoni JG, Eruslanov E (2012) Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res 4(4):376–389

    PubMed  Google Scholar 

  • Ragupathi G, Liu NX, Musselli C et al (2005) Antibodies against tumor cell glycolipids and proteins, but not mucins, mediate complement-dependent cytotoxicity. J Immunol 174(9):5706–5712

    PubMed  CAS  Google Scholar 

  • Reiter Y, Fishelson Z (1989) Targeting of complement to tumor cells by heteroconjugates composed of antibodies and of the complement component C3b. J Immunol 142(8):2771–2777

    PubMed  CAS  Google Scholar 

  • Ricklin D, Hajishengallis G, Yang K et al (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9):785–797

    PubMed  CAS  Google Scholar 

  • Roberts SJ, Ng BY, Filler RB et al (2007) Characterizing tumor-promoting T cells in chemically induced cutaneous carcinogenesis. Proc Natl Acad Sci U S A 104(16):6770–6775

    PubMed  CAS  Google Scholar 

  • Rozanov DV, Savinov AY, Golubkov VS et al (2006) Interference with the complement system by tumor cell membrane type-1 matrix metalloproteinase plays a significant role in promoting metastasis in mice. Cancer Res 66(12):6258–6263

    PubMed  CAS  Google Scholar 

  • Rushmere NK, Knowlden JM, Gee JM et al (2004) Analysis of the level of mRNA expression of the membrane regulators of complement, CD59, CD55 and CD46, in breast cancer. Int J Cancer 108(6):930–936

    PubMed  CAS  Google Scholar 

  • Rutkowski MJ, Sughrue ME, Kane AJ et al (2010a) Cancer and the complement cascade. Mol Cancer Res 8(11):1453–1465

    PubMed  CAS  Google Scholar 

  • Rutkowski MJ, Sughrue ME, Kane AJ et al (2010b) The complement cascade as a mediator of tissue growth and regeneration. Inflamm Res 59(11):897–905

    PubMed  CAS  Google Scholar 

  • Sadallah S, Lach E, Schwarz S et al (1999) Soluble complement receptor 1 is increased in patients with leukemia and after administration of granulocyte colony-stimulating factor. J Leukoc Biol 65(1):94–101

    PubMed  CAS  Google Scholar 

  • Schlesinger M, Broman I, Lugassy G (1996) The complement system is defective in chronic lymphatic leukemia patients and in their healthy relatives. Leukemia 10(9):1509–1513

    PubMed  CAS  Google Scholar 

  • Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5(2):147–159

    PubMed  CAS  Google Scholar 

  • Schraufstatter IU, Trieu K, Sikora L et al (2002) Complement c3a and c5a induce different signal transduction cascades in endothelial cells. J Immunol 169(4):2102–2110

    PubMed  CAS  Google Scholar 

  • Schraufstatter IU, Discipio RG, Zhao M et al (2009) C3a and C5a are chemotactic factors for human mesenchymal stem cells, which cause prolonged ERK1/2 phosphorylation. J Immunol 182(6):3827–3836

    PubMed  CAS  Google Scholar 

  • Schuster M, Umana P, Ferrara C et al (2005) Improved effector functions of a therapeutic monoclonal Lewis Y-specific antibody by glycoform engineering. Cancer Res 65(17):7934–7941

    PubMed  CAS  Google Scholar 

  • Selander B, Martensson U, Weintraub A et al (2006) Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J Clin Invest 116(5):1425–1434

    PubMed  CAS  Google Scholar 

  • Seya T, Hara T, Iwata K et al (1995) Purification and functional properties of soluble forms of membrane cofactor protein (CD46) of complement: identification of forms increased in cancer patients’ sera. Int Immunol 7(5):727–736

    PubMed  CAS  Google Scholar 

  • Shaw PX, Zhang L, Zhang M et al (2012) Complement factor H genotypes impact risk of age-related macular degeneration by interaction with oxidized phospholipids. Proc Natl Acad Sci U S A 109(34):13757–13762

    PubMed  CAS  Google Scholar 

  • Shi XX, Zhang B, Zang JL et al (2009) CD59 silencing via retrovirus-mediated RNA interference enhanced complement-mediated cell damage in ovary cancer. Cell Mol Immunol 6(1):61–66

    PubMed  CAS  Google Scholar 

  • Shimizu K, Nakata M, Hirami Y et al (2010) Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J Thorac Oncol 5(5):585–590

    PubMed  Google Scholar 

  • Sim RB, Day AJ, Moffatt BE et al (1993) Complement factor I and cofactors in control of complement system convertase enzymes. Methods Enzymol 223:13–35

    PubMed  CAS  Google Scholar 

  • Sjoberg AP, Manderson GA, Morgelin M et al (2009) Short leucine-rich glycoproteins of the extracellular matrix display diverse patterns of complement interaction and activation. Mol Immunol 46(5):830–839

    PubMed  Google Scholar 

  • Soane L, Cho HJ, Niculescu F et al (2001) C5b-9 Terminal complement complex protects oligodendrocytes from death by regulating Bad through phosphatidylinositol 3-kinase/Akt pathway. J Immunol 167(4):2305–2311

    PubMed  CAS  Google Scholar 

  • Spiridon CI, Ghetie MA, Uhr J et al (2002) Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo. Clin Cancer Res 8(6):1720–1730

    PubMed  CAS  Google Scholar 

  • Strey CW, Markiewski M, Mastellos D et al (2003) The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 198(6):913–923

    PubMed  CAS  Google Scholar 

  • Tang Z, Lu B, Hatch E et al (2009) C3a Mediates epithelial-to-mesenchymal transition in proteinuric nephropathy. J Am Soc Nephrol 20(3):593–603

    PubMed  CAS  Google Scholar 

  • Taylor RP, Ferguson PJ, Martin EN et al (1997) Immune complexes bound to the primate erythrocyte complement receptor (CR1) via anti-CR1 mAbs are cleared simultaneously with loss of CR1 in a concerted reaction in a rhesus monkey model. Clin Immunol Immunopathol 82(1):49–59

    PubMed  CAS  Google Scholar 

  • Tegla CA, Cudrici C, Patel S et al (2011) Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res 51(1):45–60

    PubMed  CAS  Google Scholar 

  • Terui Y, Sakurai T, Mishima Y et al (2006) Blockade of bulky lymphoma-associated CD55 expression by RNA interference overcomes resistance to complement-dependent cytotoxicity with rituximab. Cancer Sci 97(1):72–79

    PubMed  CAS  Google Scholar 

  • Theofilopoulos AN, Perrin LH (1976) Binding of components of the properdin system to cultured human lymphoblastoid cells and B lymphocytes. J Exp Med 143(2):271–289

    PubMed  CAS  Google Scholar 

  • Thiel S (2007) Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins. Mol Immunol 44(16):3875–3888

    PubMed  CAS  Google Scholar 

  • Thornton AM, Shevach EM (1998) CD4+CD25+ Immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188(2):287–296

    PubMed  CAS  Google Scholar 

  • Trougakos IP, Gonos ES (2002) Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 34(11):1430–1448

    PubMed  CAS  Google Scholar 

  • Umansky V, Sevko A (2013) Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron 6(2):169–177

    Google Scholar 

  • van Lookeren CM, Wiesmann C, Brown EJ (2007) Macrophage complement receptors and pathogen clearance. Cell Microbiol 9(9):2095–2102

    Google Scholar 

  • Varga L, Czink E, Miszlai Z et al (1995) Low activity of the classical complement pathway predicts short survival of patients with chronic lymphocytic leukaemia. Clin Exp Immunol 99(1):112–116

    PubMed  CAS  Google Scholar 

  • Varsano S, Frolkis I, Rashkovsky L et al (1996) Protection of human nasal respiratory epithelium from complement-mediated lysis by cell-membrane regulators of complement activation. Am J Respir Cell Mol Biol 15(6):731–737

    PubMed  CAS  Google Scholar 

  • Varsano S, Rashkovsky L, Shapiro H et al (1998) Human lung cancer cell lines express cell membrane complement Inhibitory proteins and are extremely resistant to complement-mediated lysis; a comparison with normal human respiratory epithelium in vitro, and an insight into mechanism(s) of resistance. Clin Exp Immunol 113(2):173–182

    PubMed  CAS  Google Scholar 

  • Vlaicu SI, Tegla CA, Cudrici CD et al (2013) Role of C5b-9 complement complex and response gene to complement-32 (RGC-32) in cancer. Immunol Res 56(1):109–121

    Google Scholar 

  • Walport MJ (2001) Complement. First of two parts. N Engl J Med 344(14):1058–1066

    PubMed  CAS  Google Scholar 

  • Watson NF, Durrant LG, Madjd Z et al (2006) Expression of the membrane complement regulatory protein CD59 (protectin) is associated with reduced survival in colorectal cancer patients. Cancer Immunol Immunother 55(8):973–980

    PubMed  CAS  Google Scholar 

  • Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10(5):317–327

    PubMed  CAS  Google Scholar 

  • Xu C, Jung M, Burkhardt M et al (2005) Increased CD59 protein expression predicts a PSA relapse in patients after radical prostatectomy. Prostate 62(3):224–232

    PubMed  CAS  Google Scholar 

  • Yamakawa M, Yamada K, Tsuge T et al (1994) Protection of thyroid cancer cells by complement-regulatory factors. Cancer 73(11):2808–2817

    PubMed  CAS  Google Scholar 

  • Yan J, Allendorf DJ, Li B et al (2008) The role of membrane complement regulatory proteins in cancer immunotherapy. Adv Exp Med Biol 632:159–174

    PubMed  CAS  Google Scholar 

  • Yefenof E, Zehavi-Feferman R, Guy R (1990) Control of primary and secondary antibody responses by cytotoxic T lymphocytes specific for a soluble antigen. Eur J Immunol 20(8):1849–1853

    PubMed  CAS  Google Scholar 

  • Ying SC, Gewurz AT, Jiang H et al (1993) Human serum amyloid P component oligomers bind and activate the classical complement pathway via residues 14–26 and 76–92 of the a chain collagen-like region of C1q. J Immunol 150(1):169–176

    PubMed  CAS  Google Scholar 

  • Ytting H, Jensenius JC, Christensen IJ et al (2004) Increased activity of the mannan-binding lectin complement activation pathway in patients with colorectal cancer. Scand J Gastroenterol 39(7):674–679

    PubMed  CAS  Google Scholar 

  • Ytting H, Christensen IJ, Thiel S et al (2005) Serum mannan-binding lectin-associated serine protease 2 levels in colorectal cancer: relation to recurrence and mortality. Clin Cancer Res 11(4):1441–1446

    PubMed  CAS  Google Scholar 

  • Zhang M, Takahashi K, Alicot EM et al (2006) Activation of the lectin pathway by natural IgM in a model of ischemia/reperfusion injury. J Immunol 177(7):4727–4734

    PubMed  CAS  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274

    PubMed  CAS  Google Scholar 

  • Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307

    PubMed  CAS  Google Scholar 

  • Zurlo JJ, Schechter GP, Fries LF (1989) Complement abnormalities in multiple myeloma. Am J Med 87(4):411–420

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in our laboratories is funded by the UTE project CIMA, Instituto de Salud Carlos III: Red Temática de Investigación Cooperativa en Cáncer (RD12/0036/0040), Ministerio de Economía y Competitividad (PI1100618), and National Institutes of Health grant AI068730. L.C. is supported by a postdoctoral fellowship from Fundación Ramón Areces. We thank Dr. Deborah McClellan for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Lambris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Pio, R., Corrales, L., Lambris, J.D. (2014). The Role of Complement in Tumor Growth. In: Koumenis, C., Hammond, E., Giaccia, A. (eds) Tumor Microenvironment and Cellular Stress. Advances in Experimental Medicine and Biology, vol 772. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5915-6_11

Download citation

Publish with us

Policies and ethics