Eigenvalue Problems: Numerical Simulations

Part of the Nonlinear Systems and Complexity book series (NSCH, volume 4)


In this chapter a numerical scheme is proposed to simulate the evolution of the solution\(\vec{x}(t)\) of dynamical system (4.1) towards an eigenvector of a given matrix, and some examples and applications are presented. The method has a linear convergence rate and we have implemented two potentially second order methods to be combined with the first one to accelerate the convergence.


Linear Convergence Rate Powerful Direct Method (DPM) Minimal Real Part Continuous Dynamical Systems Intermediate Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.R. Anderson, D.J. Sweeney, T.A. Williams, Linear Programming for Decision Making (West Publishing, New York, 1974)Google Scholar
  2. 2.
    P.M. Anselone, L.B. Rall, The solution of characteristic value-vector problems by Newton’s method. Numer. Math. 11, 38–45 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M. Avriel, Nonlinear Programming. Analysis and Methods (Dover Publications, Mineola, 2003)Google Scholar
  4. 4.
    E.M.L. Beale, Numerical Methods in Nonlinear Programming, ed. by J. Abadie (North Holland Publishing, Amsterdam, 1967)Google Scholar
  5. 5.
    J.T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM’s Advances in Design and Control (2010)Google Scholar
  6. 6.
    J.F. Bonnans, J.Ch. Gilbert, C. Lemarchal, C.A. Sagastizbal, Numerical Optimization: Theoretical and Practical Aspects (Springer, New York, 2006)zbMATHGoogle Scholar
  7. 7.
    F. Chatelin, Eigenvalues of Matrices (Wiley, Chichester, 1995)Google Scholar
  8. 8.
    K.A. Cliffe, T.J. Garratt, A. Spence, Eigenvalues of block matrices arising from problems in Fluid Mechanics. SIAM J. Matrix Anal. Appl. 15(4), 1310–1318 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. Cottle, E. Johnson, R. Wets, George B. Dantzig (1914–2005). Not. AMS 54(3), 344–369 (2007)Google Scholar
  10. 10.
    G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, 1963)zbMATHGoogle Scholar
  11. 11.
    V.N. Faddeeva, Computational Methods of Linear Algebra (Dover Publications, New York, 1959)zbMATHGoogle Scholar
  12. 12.
    J. Franklin, Methods of Mathematical Economics (Springer, New York, 1980)zbMATHCrossRefGoogle Scholar
  13. 13.
    H. Goldstein, Classical Mechanics (Addison-Wesley, Readings, 1981)Google Scholar
  14. 14.
    G.H. Golub, Ch.F. Van Loan, Matrix Computations, 2nd edn. (Johns Hopkins, Baltimore, 1989)zbMATHGoogle Scholar
  15. 15.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vectors Fields (Springer, New York, 1983)Google Scholar
  16. 16.
    E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, 2nd edn. (Springer, New York, 2006)zbMATHGoogle Scholar
  17. 17.
    S. Jiménez, L. Vázquez, Analysis of a nonlinear Klein-Gordon equation. Appl. Math. Comput. 35, 61–94 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    S. Jiménez, P. Pascual, C. Aguirre, L. Vázquez, A panoramic view of some perturbed nonlinear wave equations. Int. J. Bifurcat. Chaos 14(1), 1–40 (2004)zbMATHCrossRefGoogle Scholar
  19. 19.
    S. Jiménez, L. Vázquez, A dynamics approach to the computation of eigenvectors of matrices. J. Comput. Math. 23(6), 657–672 (2005)MathSciNetGoogle Scholar
  20. 20.
    N. Karmarkar, A new Polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    L.G. Khachiyan, A polynomial Algorithm in Linear Programming. Dokl. Akad. Nauk SSSR, 244(S), 1093–1096 (1979), translated in Soviet Mathematics Doklady 20(1), 191–194 (1979)Google Scholar
  22. 22.
    V.V. Konotop, L. Vázquez, Nonlinear Random Waves (World Scientific, Singapore, 1994). See also references [379], [403], [326], [404] and [191], therein.Google Scholar
  23. 23.
    M.C. Navarro, H. Herrero, A.M. Mancho, A. Wathen, Efficient solution of a generalized eigenvalue problem arising in a thermoconvective instability. Comm. Comput. Phys. 3(2), 308–329 (2008)MathSciNetzbMATHGoogle Scholar
  24. 24.
    L. Perko, Differential Equations and Dynamical Systems, 3rd edn. (Springer, New York, 2001)zbMATHGoogle Scholar
  25. 25.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, J.G.P. Barnes, Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1995)Google Scholar
  26. 26.
    M. Rossignoli, The Complete Pinball Book: Collecting the Game & Its History (Schiffer Publishing, Atglen, 2011)Google Scholar
  27. 27.
    F. Santos, A counterexample to the Hirsch conjecture, arXiv:1006.2814 (2010)Google Scholar
  28. 28.
    J. Stoer, R. Burslisch, Introduction to Numerical Analysis, 2nd edn. (Springer, New York, 2002)zbMATHGoogle Scholar
  29. 29.
    W.A. Strauss, L. Vázquez, Numerical solutions of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28, 271–278 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    J. Todd, The condition number of the finite segment of the Hilbert matrix. Natl. Bur. Stand. Appl. Math. Ser. 39, 109–116 (1954)MathSciNetGoogle Scholar
  31. 31.
    L. Vázquez, S. Jiménez, Analysis of a mechanical solver for linear systems of equations. J. Comput. Math. 19(1), 9–14 (2001)MathSciNetzbMATHGoogle Scholar
  32. 32.
    L. Vázquez, J.L. Vázquez-Poletti, A new approach to solve systems of linear equations. J. Comput. Math. 19(4), 445–448 (2001)MathSciNetzbMATHGoogle Scholar
  33. 33.
    L. Vázquez, J.L. Vázquez-Poletti, A mechanical approach for linear programming.; ZiF Preprint 2001/066 (2001)

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada Facultad de InformáticaUniversidad Complutense de MadridMadridSpain
  2. 2.Real Academia de Ciencias Exactas, F´isicas y NaturalesMadridSpain
  3. 3.Departamento de Matemática Aplicada a las TT.II. E.T.S.I. TelecomunicaciónUniversidad Politécnica de MadridMadridSpain

Personalised recommendations