# Solution of Systems of Linear Equations

Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 4)

## Abstract

Solving systems of linear equations (or linear systems or, also, simultaneous equations) is a common situation in many scientific and technological problems. Many methods, either analytical or numerical, have been developed to solve them. A general method most used in Linear Algebra is the Gaussian Elimination, or variations of this. Sometimes they are referred to as “direct methods”. Basically, it is an algorithm that transforms the system into an equivalent one but with a triangular matrix, thus allowing a simpler resolution. In many cases, though, whenever the matrix of the system has a specific structure or is sparse and the like, other methods can be more effective.

## Keywords

Simple Resolution Hilbert Matrices Damping Methods Simple Finite Difference Method Linear Force Field
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
D.R. Anderson, D.J. Sweeney, T.A. Williams, Linear Programming for Decision Making (West Publishing, New York, 1974)Google Scholar
2. 2.
P.M. Anselone, L.B. Rall, The solution of characteristic value-vector problems by Newton’s method. Numer. Math. 11, 38–45 (1968)
3. 3.
M. Avriel, Nonlinear Programming. Analysis and Methods (Dover Publications, Mineola, 2003)Google Scholar
4. 4.
E.M.L. Beale, Numerical Methods in Nonlinear Programming, ed. by J. Abadie (North Holland Publishing, Amsterdam, 1967)Google Scholar
5. 5.
J.T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM’s Advances in Design and Control (2010)Google Scholar
6. 6.
J.F. Bonnans, J.Ch. Gilbert, C. Lemarchal, C.A. Sagastizbal, Numerical Optimization: Theoretical and Practical Aspects (Springer, New York, 2006)
7. 7.
F. Chatelin, Eigenvalues of Matrices (Wiley, Chichester, 1995)Google Scholar
8. 8.
K.A. Cliffe, T.J. Garratt, A. Spence, Eigenvalues of block matrices arising from problems in Fluid Mechanics. SIAM J. Matrix Anal. Appl. 15(4), 1310–1318 (1994).
9. 9.
R. Cottle, E. Johnson, R. Wets, George B. Dantzig (1914–2005). Not. AMS 54(3), 344–369 (2007)Google Scholar
10. 10.
G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, 1963)
11. 11.
V.N. Faddeeva, Computational Methods of Linear Algebra (Dover Publications, New York, 1959)
12. 12.
J. Franklin, Methods of Mathematical Economics (Springer, New York, 1980)
13. 13.
14. 14.
G.H. Golub, Ch.F. Van Loan, Matrix Computations, 2nd edn. (Johns Hopkins, Baltimore, 1989)
15. 15.
J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vectors Fields (Springer, New York, 1983)Google Scholar
16. 16.
E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, 2nd edn. (Springer, New York, 2006)
17. 17.
S. Jiménez, L. Vázquez, Analysis of a nonlinear Klein-Gordon equation. Appl. Math. Comput. 35, 61–94 (1990)
18. 18.
S. Jiménez, P. Pascual, C. Aguirre, L. Vázquez, A panoramic view of some perturbed nonlinear wave equations. Int. J. Bifurcat. Chaos 14(1), 1–40 (2004)
19. 19.
S. Jiménez, L. Vázquez, A dynamics approach to the computation of eigenvectors of matrices. J. Comput. Math. 23(6), 657–672 (2005)
20. 20.
N. Karmarkar, A new Polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)
21. 21.
L.G. Khachiyan, A polynomial Algorithm in Linear Programming. Dokl. Akad. Nauk SSSR, 244(S), 1093–1096 (1979), translated in Soviet Mathematics Doklady 20(1), 191–194 (1979)Google Scholar
22. 22.
V.V. Konotop, L. Vázquez, Nonlinear Random Waves (World Scientific, Singapore, 1994). See also references [379], [403], [326], [404] and [191], therein.Google Scholar
23. 23.
M.C. Navarro, H. Herrero, A.M. Mancho, A. Wathen, Efficient solution of a generalized eigenvalue problem arising in a thermoconvective instability. Comm. Comput. Phys. 3(2), 308–329 (2008)
24. 24.
L. Perko, Differential Equations and Dynamical Systems, 3rd edn. (Springer, New York, 2001)
25. 25.
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, J.G.P. Barnes, Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1995)Google Scholar
26. 26.
M. Rossignoli, The Complete Pinball Book: Collecting the Game & Its History (Schiffer Publishing, Atglen, 2011)Google Scholar
27. 27.
F. Santos, A counterexample to the Hirsch conjecture, arXiv:1006.2814 (2010)Google Scholar
28. 28.
J. Stoer, R. Burslisch, Introduction to Numerical Analysis, 2nd edn. (Springer, New York, 2002)
29. 29.
W.A. Strauss, L. Vázquez, Numerical solutions of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28, 271–278 (1978)
30. 30.
J. Todd, The condition number of the finite segment of the Hilbert matrix. Natl. Bur. Stand. Appl. Math. Ser. 39, 109–116 (1954)
31. 31.
L. Vázquez, S. Jiménez, Analysis of a mechanical solver for linear systems of equations. J. Comput. Math. 19(1), 9–14 (2001)
32. 32.
L. Vázquez, J.L. Vázquez-Poletti, A new approach to solve systems of linear equations. J. Comput. Math. 19(4), 445–448 (2001)
33. 33.
L. Vázquez, J.L. Vázquez-Poletti, A mechanical approach for linear programming. http://www.uni-bielefeld.de/ZiF/complexity; ZiF Preprint 2001/066 (2001)