Skip to main content

Large Deviations for Hilbert-Space-Valued Wiener Processes: A Sequence Space Approach

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 34)

Abstract

Ciesielski’s isomorphism between the space of α-Hölder continuous functions and the space of bounded sequences is used to give an alternative proof of the large deviation principle (LDP) for Wiener processes with values in Hilbert space.

Keywords

  • Large deviations
  • Schilder’s theorem
  • Hilbert space valued Wiener process
  • Ciesielski’s isomorphism

MSC subject classifications 2010: 60F10; 60G15.

Received 9/23/2011; Accepted 3/5/2012; Final 3/20/2012

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-5906-4_6
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-5906-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.00
Price excludes VAT (USA)

References

  1. Baldi, P., Roynette, B.: Some exact equivalents for the Brownian motion in Hölder norm. Probab. Theory Relat. Fields 93, 457–484 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Ben Arous, G., Gradinaru, M.: Hölder norms and the support theorem for diffusions. Ann. Inst. H. Poincaré 30, 415–436 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Ben Arous, G., Ledoux, M.: Grandes déviations de Freidlin-Wentzell en norme Hölderienne. Séminaire de Probabilités 28, 293–299 (1994)

    MathSciNet  Google Scholar 

  4. Ciesielski, Z.: On the isomorphisms of the spaces H α and m. Bull. Acad. Pol. Sci. 8, 217–222 (1960)

    Google Scholar 

  5. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    CrossRef  MATH  Google Scholar 

  6. Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications. Springer, New York (1998)

    CrossRef  Google Scholar 

  7. Eddahbi, M., Ouknine, Y.: Large deviations of diffusions on Besov-Orlicz spaces. Bull. Sci. Math. 121, 573–584 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Eddahbi, M., N’zi, M., Ouknine, Y.: Grandes déviations des diffusions sue les espaces de Besov-Orlicz et application. Stoch. Stoch. Rep. 65, 299–315 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Freidlin, M., Wentzell, A.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1998)

    CrossRef  MATH  Google Scholar 

  10. Galves, A., Olivieri, E., Vares, M.: Metastability for a class of dynamical systems subject to small random perturbations. Ann. Probab. 15, 1288–1305 (1987)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Schilder, M.: Asymptotic formulas for Wiener integrals. Trans. Amer. Math. Soc. 125, 63–85 (1966)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Nicolas Perkowski is supported by a Ph.D. scholarship of the Berlin Mathematical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Imkeller .

Editor information

Editors and Affiliations

Additional information

Dedicated to David Nualart on the occasion of his 60th birthday

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Andresen, A., Imkeller, P., Perkowski, N. (2013). Large Deviations for Hilbert-Space-Valued Wiener Processes: A Sequence Space Approach. In: Viens, F., Feng, J., Hu, Y., Nualart , E. (eds) Malliavin Calculus and Stochastic Analysis. Springer Proceedings in Mathematics & Statistics, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5906-4_6

Download citation