Skip to main content

A Strong Approximation of Subfractional Brownian Motion by Means of Transport Processes

  • Conference paper
  • First Online:
Malliavin Calculus and Stochastic Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 34))

Abstract

Subfractional Brownian motion is a process analogous to fractional Brownian motion but without stationary increments. In Garzón et al. (Stoch. Proc. Appl. 119:3435–3452, 2009) we proved a strong uniform approximation with a rate of convergence for fractional Brownian motion by means of transport processes. In this paper we prove a similar type of approximation for subfractional Brownian motion.

Received 10/11/2011; Accepted 1/10/2012; Final 1/27/2012

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bardina, X., Bascompte, D.: Weak convergence towards two independent Gaussian processes from a unique Poisson process. Collect. Math. 61(2), 191–204 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biagini, F., Hu, Y., / Oksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Springer, London (2008)

    Google Scholar 

  3. Bojdecki, T., Gorostiza, L.G., Talarczyk, A.: Sub-fractional Brownian motion and its relation to occupation times. Stat. Prob. Lett. 69, 405–419 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bojdecki, T., Gorostiza, L.G., Talarczyk, A.: Occupation times of branching systems with initial inhomogeneous Poisson states and related superprocesses. Elec. J. Probab. 14, 1328–1371 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Bojdecki, T., Gorostiza, L.G., Talarczyk, A.: Particle systems with quasi-homogeneous initial states and their occupation time fluctuations. Elect. Commun. Probab. 15, 191–202 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bojdecki, T., Talarczyk, A.: Particle picture interpretation of some Gaussian processes related to fractional Brownian motion. Stoch. Proc. Appl. 122(5), 2134–2154 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Doukhan, P., Oppenheim, G., Taqqu, M.S.: Theory and Applications of Long-Range Dependence. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  8. Dzhaparidze, K.O., van Zanten, J.H.: A series expansion of fractional Brownian motion. Probab. Theory Relat. Fields 130, 39–55 (2004)

    Article  MATH  Google Scholar 

  9. El-Nouty, C.: The lower classes of the sub-fractional Brownian motion. In: Stochastic Differential Equations and Processes. Springer Proceedings in Mathematics, vol. 7, pp. 179–196 (2012)

    Article  Google Scholar 

  10. Garzón, J., Gorostiza, L.G., León, J.A.: A strong uniform approximation of fractional Brownian motion by means of transport processes. Stoch. Proc. Appl. 119, 3435–3452 (2009)

    Article  MATH  Google Scholar 

  11. Garzón, J., Gorostiza, L.G., León, J.A.: Approximations of fractional stochastic differential equations by means of transport processes. Comm. Stoch. Anal. 5, 443–456 (2011)

    Google Scholar 

  12. J. Garzón, S. Torres, C.A. Tudor, A strong convergence to the Rosenblatt process. J. Math. Anal. Appl. 391(2), 630–647 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gorostiza, L.G., Griego, R.J.: Rate of convergence of uniform transport processes to Brownian motion and application to stochastic integrals. Stochastics 3, 291–303 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Harnett, D. Nualart, Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes. Stoch. Proc. Appl. 122(10), 3460–3505 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lei, P., Nualart, D.: A decomposition of the bifractional Brownian motion and some applications. Stat. Prob. Lett. 79, 619–624 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Li, Y. Xiao, Occupation time fluctuations of weakly degenerate branching systems. J. Theoret. Probab. 25(14), 1119–1152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, J., Li, L., Yan, L.: Sub-fractional model for credit risk pricing. Int. J. Nonlinear Sci. Numerical Simulation 11, 231–236 (2010)

    Google Scholar 

  18. Liu, J., Yan, L., Peng, Z., Wang, D.: Remarks on confidence intervals for self-similarity parameter of a subfractional Brownian motion. Abstract Appl. Anal. 2012, 14 (2012). article ID 804942

    Google Scholar 

  19. J. Liu, L. Yan, Remarks on asymptotic behavior of weighted quadratic variation of subfractional Brownian motion. J. Korean Statist. Soc. 41(2), 177–187 (2012)

    Article  Google Scholar 

  20. Mendy, I.: On the local time of sub-fractional Brownian motion. Annales Mathématiques Blaise Pascal 17, 357–374 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mishura, Y.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, New York (2008)

    Book  MATH  Google Scholar 

  22. Norvaiša, R.: A complement to Gladyshev’s theorem. Lithuanian Math. J. 51, 26–35 (2011)

    Article  Google Scholar 

  23. Nualart, D.: Stochastic integration with respect to fractional Brownian motion and applications. In: González-Barrios, J.M., León, J.A., Meda, A. (eds.) Stochastic Models. Contemporary Mathematics, vol. 336, pp. 3–39. American Mathematical Society, Providence (2003)

    Chapter  Google Scholar 

  24. Nualart, D., Tindel, S.: A construction of the rough path above fractional Brownian motion using Volterra’s representation. Ann. Probab. 39, 1061–1096 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ruiz de Chávez, J., Tudor, C.: A decomposition of sub-fractional Brownian motion. Math. Reports 11(61,1) 67–74 (2009)

    Google Scholar 

  26. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  27. Shen, G.: Necessary and sufficient condition for the smoothness of intersection local time of subfractional Brownian motions. J. Inequalities Appl. 139, 1–16 (2011)

    Google Scholar 

  28. G. Shen, C. Chen, Stochastic integration with respect to the sub-fractional Brownian motion. Statist. Probab. Lett. 82(2), 240–251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, G., Chen, C., Yan, L.: Remarks on sub-fractional Bessel processes. Acta Mathematica Scientia Ser. B 31(5), 1860–1876 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, G., Yan, L.: Remarks on an integral functional driven by sub-fractional Brownian motion. J. Korean Statist. Soc. 40(3), 337–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Słomiński, L., Ziemkiewicz, B.: On weak approximations of integral with respect to fractional Brownian motion. Stat. Prob. Lett. 79, 543–552 (2009)

    Article  MATH  Google Scholar 

  32. Swanson, J.: Fluctuations of the empirical quantiles of independent Brownian motions. Stoch. Proc. Appl. 121, 479–514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tudor, C.: Some aspects of stochastic calculus for the sub-fractional Brownian motion. Analele Universităţii Bucureşti, Matematica\(\breve{\mathrm{a}}\) LVII, 199–230 (2008)

    Google Scholar 

  34. Tudor, C.: Inner product spaces of integrands associated to sub-fractional Brownian motion. Stat. Probab. Lett. 78, 2201–2209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tudor, C.: Sub-fractional Brownian motion as a model in finance. University of Bucharest, Romania (2008)

    Google Scholar 

  36. Tudor, C.: Some properties of the sub-fractional Brownian motion. Stochastics 79, 431–448 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Tudor, C.: On the Wiener integral with respect to a sub-fractional Brownian motion on an interval. J. Math. Anal. Appl. 351, 456–468 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tudor, C.: Berry-Esséen bounds and almost sure CLT for the quadratic variation of the sub-fractional Brownian motion. J. Math. Analysis Appl. 375, 667–676 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yan, L., Shen, G.: On the collision local time of sub-fractional Brownian motions. Stat. Prob. Lett. 80, 296–308 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yan, L., Shen, G., He, K.: Itô’s formula for a sub-fractional Brownian motion. Commun. Stoch. Analysis 5, 135–159 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was done with support of CONACyT grant 98998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Garzón, J., Gorostiza, L.G., León, J.A. (2013). A Strong Approximation of Subfractional Brownian Motion by Means of Transport Processes. In: Viens, F., Feng, J., Hu, Y., Nualart , E. (eds) Malliavin Calculus and Stochastic Analysis. Springer Proceedings in Mathematics & Statistics, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5906-4_15

Download citation

Publish with us

Policies and ethics