Skip to main content

Intermittency and Chaos for a Nonlinear Stochastic Wave Equation in Dimension 1

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 34)

Abstract

Consider a nonlinear stochastic wave equation driven by space-time white noise in dimension one. We discuss the intermittency of the solution, and then use those intermittency results in order to demonstrate that in many cases the solution is chaotic. For the most part, the novel portion of our work is about the two cases where (1) the initial conditions have compact support, where the global maximum of the solution remains bounded, and (2) the initial conditions are positive constants, where the global maximum is almost surely infinite. Bounds are also provided on the behavior of the global maximum of the solution in Case (2).

Keywords

  • Intermittency
  • The stochastic wave equation
  • Chaos

MSC Subject Classication 2000: 60H15; 60H20, 60H05

Received 12/5/2011; Accepted 2/29/2012; Final 7/17/2012

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-5906-4_11
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-5906-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.00
Price excludes VAT (USA)

References

  1. Amir G., Corwin I., Quastel J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Comm. Pure Appl. Math. 64, 466–537 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Assing, S.: A rigorous equation for the Cole–Hopf solution of the conservative KPZ dynamics. Preprint (2011) available from http://arxiv.org/abs/1109.2886

  3. Bertini, L., Cancrini N.: The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78(5–6), 1377–1401 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Burkholder, D.L.: Martingale transforms. Ann. Math. Stat. 37, 1494–1504 (1966)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Burkholder, D.L., Gundy, R.F.: Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249–304 (1970)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Burkholder, D.L., Davis B.J., Gundy, R.F.: Integral inequalities for convex functions of operators on martingales. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. II, pp. 223–240. University of California Press, Berkeley, California (1972)

    Google Scholar 

  7. Carlen, E., Kree, P.: L p estimates for multiple stochastic integrals. Ann. Probab. 19(1), 354–368 (1991)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Carmona, R.A., Molchanov, S.A.: Parabolic Anderson problem and intermittency. Memoires of the American Mathematical Society, vol. 108. American Mathematical Society, Rhode Island (1994)

    Google Scholar 

  9. Carmona, R.A., Nualart, D.: Random nonlinear wave equations: propagation of singularities. Ann. Probab. 16(2), 730–751 (1988)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Conus, D., Dalang, R.C.: The non-linear stochastic wave equation in high dimensions. Electron. J. Probab. 13, 629–670 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Conus, D., Khoshnevisan, D.: On the existence and position of the farthest peaks of a family of stochastic heat and wave equations. Probab. Theory Relat. Fields. 152 n.3–4, 681–701 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Conus, D., Joseph, M., Khoshnevisan, D.: On the chaotic character of the stochastic heat equation, before the onset of intermittency. Ann. Probab. To appear.

    Google Scholar 

  13. Dalang, R.C.: Extending martingale measure stochastic integral with applications to spatially homogeneous spde’s. Electron. J. Probab. 4, 1–29 (1999)

    CrossRef  MathSciNet  Google Scholar 

  14. Dalang, R.C., Frangos, N.E.: The stochastic wave equation in two spatial dimensions. Ann. Probab. 26(1), 187–212 (1998)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Dalang, R.C., Mueller, C.: Some non-linear s.p.d.e’s that are second order in time. Electron. J. Probab. 8 (2003)

    Google Scholar 

  16. Dalang, R.C., Mueller, C.: Intermittency properties in a hyperbolic Anderson problem. Ann. l’Institut Henri Poincaré 45(4), 1150–1164 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Dalang, R.C., Khohsnevisan, D., Mueller, C., Nualart, D., Xiao, Y.: A minicourse in stochastic partial differential equations. In: Lecture Notes in Mathematics, vol. 1962. Springer, Berlin (2006)

    Google Scholar 

  18. Davis, B.: On the L p norms of stochastic integrals and other martingales. Duke Math. J. 43(4), 697–704 (1976)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. Foondun, M., Khoshnevisan, D.: Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14(12), 548–568 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Foondun, M., Khoshnevisan, D.: On the global maximum of the solution to a stochastic heat equation with compact-support initial data. Ann. l’Institut Henri Poincaré 46(4), 895–907 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Gärtner, J., König, W., Molchanov S.: Geometric characterization of intermittency in the parabolic Anderson model. Ann. Probab. 35(2), 439–499 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Gonçalves, P., Jara, M.: Universality of KPZ equation. Preprint (2010) available from http://arxiv.org/abs/1003.4478

  23. Hairer, M.: Solving the KPZ equation. To appear in Annals of Mathematics. (2012) Available from http://arxiv.org/abs/1109.6811

  24. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1985)

    CrossRef  Google Scholar 

  25. Mueller, C.: On the support of solutions to the heat equation with noise. Stochast. Stochast. Rep. 37(4), 225–245 (1991)

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. Walsh, J.B.: An introduction to stochastic partial differential equations. In: Ecole d’Etè de Probabilitès de St-Flour, XIV, 1984. Lecture Notes in Mathematics, vol. 1180, pp. 265–439. Springer, Berlin (1986)

    Google Scholar 

Download references

Acknowledgements

An anonymous referee read this paper quite carefully and made a number of critical suggestions and corrections that have improved the paper. We thank him or her wholeheartedly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Conus .

Editor information

Editors and Affiliations

Additional information

This paper is dedicated to Professor David Nualart, whose scientific innovations have influenced us greatly.

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Conus, D., Joseph, M., Khoshnevisan, D., Shiu, SY. (2013). Intermittency and Chaos for a Nonlinear Stochastic Wave Equation in Dimension 1. In: Viens, F., Feng, J., Hu, Y., Nualart , E. (eds) Malliavin Calculus and Stochastic Analysis. Springer Proceedings in Mathematics & Statistics, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5906-4_11

Download citation