Role of Cytokines in Angiogenesis: Turning It On and Off

  • Melissa A. Thal
  • Raj Kishore
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 6)


The microenvironment surrounding endothelial cells is rich with secreted proteins necessary for regulating the life cycle of a blood vessel. Without these critical cytokines, initiation and growth of new blood vessels would cease and the integrity of existing blood vessels would be diminished. Cytokine-­induced regulation of angiogenesis is critical for normal vessel growth and ischemic tissue repair, but if unchecked may lead to tumor progression and metastasis. In this chapter, we introduce the cytokines that play active roles during the different stages of angiogenesis and discuss their ability to coordinate both pro- and anti-angiogenic outcomes.


Cytokines Pro-/anti-angiogenic VEGF 



Work described in this manuscript was in part supported by National Institute of Health grants HL091983, HL105597, HL095874, HL053354 and HL108795 (R.K.) and NRSA F32 postdoctoral award HL107093 (M.T.).


  1. 1.
    Hughes CC (2008) Endothelial-stromal interactions in angiogenesis. Curr Opin Hematol 15:204–209PubMedCrossRefGoogle Scholar
  2. 2.
    von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629CrossRefGoogle Scholar
  3. 3.
    Senger DR, Connolly DT, Van de Water L et al (1990) Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res 50:1774–1778PubMedGoogle Scholar
  4. 4.
    Aase K, von Euler G, Li X et al (2001) Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation 104:358–364PubMedCrossRefGoogle Scholar
  5. 5.
    Bellomo D, Headrick JP, Silins GU et al (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86:E29–E35PubMedCrossRefGoogle Scholar
  6. 6.
    Karkkainen MJ, Haiko P, Sainio K et al (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5:74–80PubMedCrossRefGoogle Scholar
  7. 7.
    Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476PubMedCrossRefGoogle Scholar
  8. 8.
    Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563PubMedCrossRefGoogle Scholar
  9. 9.
    Cao Y, Linden P, Farnebo J et al (1998) Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci U S A 95:14389–14394PubMedCrossRefGoogle Scholar
  10. 10.
    Maglione D, Guerriero V, Viglietto G et al (1991) Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci U S A 88:9267–9271PubMedCrossRefGoogle Scholar
  11. 11.
    Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583PubMedCrossRefGoogle Scholar
  12. 12.
    Fischer C, Mazzone M, Jonckx B, Carmeliet P (2008) FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8:942–956PubMedCrossRefGoogle Scholar
  13. 13.
    Christinger HW, Fuh G, de Vos AM, Wiesmann C (2004) The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1. J Biol Chem 279:10382–10388PubMedCrossRefGoogle Scholar
  14. 14.
    Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66PubMedCrossRefGoogle Scholar
  15. 15.
    Carmeliet P, Ferreira V, Breier G et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439PubMedCrossRefGoogle Scholar
  16. 16.
    Ferrara N, Bunting S (1996) Vascular endothelial growth factor, a specific regulator of angiogenesis. Curr Opin Nephrol Hypertens 5:35–44PubMedCrossRefGoogle Scholar
  17. 17.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedCrossRefGoogle Scholar
  18. 18.
    Brou C, Logeat F, Gupta N et al (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 5:207–216PubMedCrossRefGoogle Scholar
  19. 19.
    Jakobsson L, Bentley K, Gerhardt H (2009) VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 37:1233–1236PubMedCrossRefGoogle Scholar
  20. 20.
    Krebs LT, Xue Y, Norton CR et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352PubMedGoogle Scholar
  21. 21.
    Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci U S A 98:5643–5648PubMedCrossRefGoogle Scholar
  22. 22.
    Hrabe de Angelis M, McIntyre J II, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386:717–721PubMedCrossRefGoogle Scholar
  23. 23.
    Krebs LT, Shutter JR, Tanigaki K et al (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 18:2469–2473PubMedCrossRefGoogle Scholar
  24. 24.
    Xue Y, Gao X, Lindsell CE et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723–730PubMedCrossRefGoogle Scholar
  25. 25.
    Benedito R, Roca C, Sorensen I et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135PubMedCrossRefGoogle Scholar
  26. 26.
    Liu ZJ, Shirakawa T, Li Y et al (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23:14–25PubMedCrossRefGoogle Scholar
  27. 27.
    Hellstrom M, Phng LK, Gerhardt H (2007) VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr 1:133–136PubMedCrossRefGoogle Scholar
  28. 28.
    Suchting S, Freitas C, le Noble F et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104:3225–3230PubMedCrossRefGoogle Scholar
  29. 29.
    Yan M, Callahan CA, Beyer JC et al (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463:E6–E7PubMedCrossRefGoogle Scholar
  30. 30.
    Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253PubMedCrossRefGoogle Scholar
  31. 31.
    Murakami M, Nguyen LT, Zhuang ZW et al (2008) The FGF system has a key role in regulating vascular integrity. J Clin Invest 118:3355–3366PubMedCrossRefGoogle Scholar
  32. 32.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603PubMedCrossRefGoogle Scholar
  33. 33.
    Brantley-Sieders DM, Chen J (2004) Eph receptor tyrosine kinases in angiogenesis: from development to disease. Angiogenesis 7:17–28PubMedCrossRefGoogle Scholar
  34. 34.
    Kim YH, Hu H, Guevara-Gallardo S et al (2008) Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development 135(22):3755–3764PubMedCrossRefGoogle Scholar
  35. 35.
    Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753PubMedCrossRefGoogle Scholar
  36. 36.
    Surawska H, Ma PC, Salgia R (2004) The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15:419–433PubMedCrossRefGoogle Scholar
  37. 37.
    Salvucci O, de la Luz Sierra M, Martina JA et al (2006) EphB2 and EphB4 receptors forward signaling promotes SDF-1-induced endothelial cell chemotaxis and branching remodeling. Blood 108:2914–2922PubMedCrossRefGoogle Scholar
  38. 38.
    Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2:a001875PubMedCrossRefGoogle Scholar
  39. 39.
    Pfaff D, Heroult M, Riedel M et al (2008) Involvement of endothelial ephrin-B2 in adhesion and transmigration of EphB-receptor-expressing monocytes. J Cell Sci 121:3842–3850PubMedCrossRefGoogle Scholar
  40. 40.
    Foo SS, Turner CJ, Adams S et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173PubMedCrossRefGoogle Scholar
  41. 41.
    Sawamiphak S, Seidel S, Essmann CL et al (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487–491PubMedCrossRefGoogle Scholar
  42. 42.
    Wang Y, Nakayama M, Pitulescu ME et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465:483–486PubMedCrossRefGoogle Scholar
  43. 43.
    Rossant J, Howard L (2002) Signaling pathways in vascular development. Annu Rev Cell Dev Biol 18:541–573PubMedCrossRefGoogle Scholar
  44. 44.
    Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-­beta superfamily. J Biol Chem 274:584–594PubMedCrossRefGoogle Scholar
  45. 45.
    Letamendia A, Lastres P, Botella LM et al (1998) Role of endoglin in cellular responses to transforming growth factor-beta. A comparative study with betaglycan. J Biol Chem 273:33011–33019PubMedCrossRefGoogle Scholar
  46. 46.
    Azuma H (2000) Genetic and molecular pathogenesis of hereditary hemorrhagic telangiectasia. J Med Invest 47:81–90PubMedGoogle Scholar
  47. 47.
    Baird A, Durkin T (1986) Inhibition of endothelial cell proliferation by type beta-­transforming growth factor: interactions with acidic and basic fibroblast growth factors. Biochem Biophys Res Commun 138:476–482PubMedCrossRefGoogle Scholar
  48. 48.
    Frater-Schroder M, Muller G, Birchmeier W, Bohlen P (1986) Transforming growth factor-­beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun 137:295–302PubMedCrossRefGoogle Scholar
  49. 49.
    Iruela-Arispe ML, Sage EH (1993) Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-beta 1. J Cell Biochem 52:414–430PubMedCrossRefGoogle Scholar
  50. 50.
    RayChaudhury A, D’Amore PA (1991) Endothelial cell regulation by transforming growth factor-beta. J Cell Biochem 47:224–229PubMedCrossRefGoogle Scholar
  51. 51.
    Sutton AB, Canfield AE, Schor SL et al (1991) The response of endothelial cells to TGF beta-1 is dependent upon cell shape, proliferative state and the nature of the substratum. J Cell Sci 99:777–787PubMedGoogle Scholar
  52. 52.
    Hofer E, Schweighofer B (2007) Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb Haemost 97:355–363PubMedGoogle Scholar
  53. 53.
    Roberts AB, Sporn MB, Assoian RK et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 83:4167–4171PubMedCrossRefGoogle Scholar
  54. 54.
    Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20:556–567PubMedCrossRefGoogle Scholar
  55. 55.
    Hellstrom M, Gerhardt H, Kalen M et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553PubMedCrossRefGoogle Scholar
  56. 56.
    Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177PubMedCrossRefGoogle Scholar
  57. 57.
    Dumont DJ, Gradwohl G, Fong GH et al (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909PubMedCrossRefGoogle Scholar
  58. 58.
    Partanen J, Armstrong E, Makela TP et al (1992) A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol 12:1698–1707PubMedGoogle Scholar
  59. 59.
    Iwama A, Hamaguchi I, Hashiyama M et al (1993) Molecular cloning and characterization of mouse TIE and TEK receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem Biophys Res Commun 195:301–309PubMedCrossRefGoogle Scholar
  60. 60.
    Maisonpierre PC, Goldfarb M, Yancopoulos GD, Gao G (1993) Distinct rat genes with related profiles of expression define a TIE receptor tyrosine kinase family. Oncogene 8:1631–1637PubMedGoogle Scholar
  61. 61.
    Sato TN, Qin Y, Kozak CA, Audus KL (1993) Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci U S A 90:9355–9358PubMedCrossRefGoogle Scholar
  62. 62.
    Schnurch H, Risau W (1993) Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119:957–968PubMedGoogle Scholar
  63. 63.
    Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177PubMedCrossRefGoogle Scholar
  64. 64.
    Valenzuela DM, Griffiths JA, Rojas J et al (1999) Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci U S A 96:1904–1909PubMedCrossRefGoogle Scholar
  65. 65.
    Suri C, Jones PF, Patan S et al (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180PubMedCrossRefGoogle Scholar
  66. 66.
    De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226PubMedCrossRefGoogle Scholar
  67. 67.
    Falcon BL, Hashizume H, Koumoutsakos P et al (2009) Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am J Pathol 175:2159–2170PubMedCrossRefGoogle Scholar
  68. 68.
    Fantin A, Vieira JM, Gestri G et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840PubMedCrossRefGoogle Scholar
  69. 69.
    Salcedo R, Wasserman K, Young HA et al (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154:1125–1135PubMedCrossRefGoogle Scholar
  70. 70.
    Burns JM, Summers BC, Wang Y et al (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203:2201–2213PubMedCrossRefGoogle Scholar
  71. 71.
    Brouty-Boye D, Zetter BR (1980) Inhibition of cell motility by interferon. Science 208(4443):516–518PubMedCrossRefGoogle Scholar
  72. 72.
    Kazerounian S, Yee KO, Lawler J (2008) Thrombospondins in cancer. Cell Mol Life Sci 65:700–712PubMedCrossRefGoogle Scholar
  73. 73.
    Shaked Y, Bertolini F, Man S et al (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7:101–111PubMedGoogle Scholar
  74. 74.
    Rastinejad F, Polverini PJ, Bouck NP (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56:345–355PubMedCrossRefGoogle Scholar
  75. 75.
    Good DJ, Polverini PJ, Rastinejad F et al (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87:6624–6628PubMedCrossRefGoogle Scholar
  76. 76.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  77. 77.
    Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684PubMedCrossRefGoogle Scholar
  78. 78.
    Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMedCrossRefGoogle Scholar
  79. 79.
    Cook KM, Fig. WD (2010) Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 60:222–243PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Feinberg Cardiovascular Research Institute, Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations