Heat Transfer with Nanofluids

  • Efstathios E. Stathis Michaelides
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Nanofluids are suspensions of nano-size particles (typically 5–1,000;nm) in liquids. Several research projects in the late 1990s and the first decade of the twenty-first century indicated that the addition of small amounts of nanoparticles in common cooling fluids increases significantly the effective conductivity of these suspensions as well as their convective heat transfer coefficients. While typical experimentally determined conductivity enhancements were in the range 10–50%, some early experiments showed enhancement values higher than 100%. Experiments on the mass transfer coefficients with nanofluids reported more dramatic results with maximum mass transfer enhancements in the range of two to six times that of the base fluid. The significantly enhanced transport properties of the nanofluids have enormous implications in industrial processes, such as the cooling of very small electronic components, which will comprise the next generation of computer chips, absorption of gases by liquid carriers, chemical reactions, combustion for electricity generation, cooling of IC engines, directed-energy weapons, boiling under microgravity conditions, nuclear reactor cooling, and biomedicine. Because of the enormous industrial and economic potential of nanofluids, a significant amount of research was conducted during the first decade of the twenty-first century on the thermal and transport properties and applications of nanofluids, hundreds of journal articles were written, and several conferences were devoted to the subject. This chapter describes the salient heat transfer characteristics of nanofluids. At first, the chapter includes a fundamental description of continua and when nanoparticles may be considered as continua. Second, a rigorous definition of the thermodynamic properties of heterogeneous mixtures is given, with applications to the density and specific heat capacity of nanofluids. Third, the transport properties of nanofluids are described, in particular, viscosity and conductivity. Likely mechanisms for the enhancements of the transport properties are also described in detail and in a critical way. Finally, experimental results and the underlying theory are presented on the enhancement of the convective heat transfer coefficients and the effect of nanoparticles on the pool boiling processes and the critical heat flux of the base fluids.

Keywords

Nanofluids Continuum Properties Viscosity Conductivity Brownian motion Double layer Enhanced heat transfer 

Bibliography

  1. Altan CL, Elkatmis A, Yuksel M, Asian N, Bucak S (2011) Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids. J Appl Phys 110:093917-1–093917-7CrossRefGoogle Scholar
  2. Anoop KB, Kabelac S, Sundarajan T, Das SK (2009) Rheological and flow characteristics of nanofluids. J Appl Phys 106:034909CrossRefGoogle Scholar
  3. Bang IC, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3-water nanofluids form a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419CrossRefGoogle Scholar
  4. Basset AB (1888) Treatise on hydrodynamics. Bell, LondonMATHGoogle Scholar
  5. Batchelor G (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles, I. Fluid Mech 83:97–117MathSciNetCrossRefGoogle Scholar
  6. Berg JC (2010) An introduction to interfaces and colloids - the bridge to nanoscience. World Scientific, Hackensack, NJGoogle Scholar
  7. Bergman TL (2009) Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection. Int J Heat Mass Transf 52:1240–1244MATHCrossRefGoogle Scholar
  8. Bonnecaze RT, Brady JF (1990) A method for determining the effective conductivity of dispersions of particles. Proc Math Phys Sci 430(1879):285–313MATHCrossRefGoogle Scholar
  9. Bonnecaze RT, Brady JF (1991) The effective conductivity of random suspensions of spherical particles. Proc Math Phys Sci 423(186):445–465CrossRefGoogle Scholar
  10. Brinkman H (1952) The viscosity of concentrated suspensions in solutions. J Chem Phys 20:571–582CrossRefGoogle Scholar
  11. Brock JR (1962) On the theory of thermal forces acting on aerosol particles. J Colloid Sci 17:768–780CrossRefGoogle Scholar
  12. Bruggeman DAG (1935) Berehnung vershidener physikalisher Konstanten von heterogenen Substanzen: I. Anallen der Physik 24:636–664CrossRefGoogle Scholar
  13. Brunn PO (1982) Heat or mass transfer from single spheres in a low Reynolds number flow. Int J Eng Sci 20(7):817–822MathSciNetMATHCrossRefGoogle Scholar
  14. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim JH, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Vaerenbergh SV, Wen D, Witharana S, Yang C, Yeh WH, Zhao XZ, Zhou SQ (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312CrossRefGoogle Scholar
  15. Chaudhri A, Lukes JR (2009) Multicomponent energy conserving dissipative particle dynamics: a general framework for mesoscopic heat transfer applications. J Heat Transf 131:033108-1–033108-9CrossRefGoogle Scholar
  16. Chen H, Ding Y, He Y, Tan C (2007) Rheological behavior of ethylene glycol based titania nanofluids. Chem Phys Lett 444:333–337CrossRefGoogle Scholar
  17. Cherkasova AS, Shan JW (2008) Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions. J Heat Transf 130:082406-1–082406-7CrossRefGoogle Scholar
  18. Cherkasova AS, Shan JW (2010) Particle aspect-ratio and agglomeration-state effects on the effective thermal conductivity of aqueous suspensions of multiwalled carbon nanotubes. J Heat Transf 132:082402-1–082402-11CrossRefGoogle Scholar
  19. Choi SUS (2009) Nanofluids: from vision to reality through research. J Heat Transf 131:033106-1–033106-9CrossRefGoogle Scholar
  20. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRefGoogle Scholar
  21. Choi CH, Ulmanella U, Kim J (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18:087105-1–087105-8Google Scholar
  22. Chopkar M, Sudarshan S, Das PK, Manna I (2008) Effect of particle size on thermal conductivity of nanofluids. Metallurg Mater Trans A 39(7):1535–1542CrossRefGoogle Scholar
  23. Dansinger WJ (1963) Heat transfer to fluidized gas-solids mixtures in vertical transport. Ind Eng Chem Fundam 2(4):269–276Google Scholar
  24. Das SK, Putra SK, Roetzel W (2003) Pool boiling characteristics of nanofluids. Int J Heat Mass Transf 46:851–862CrossRefGoogle Scholar
  25. Di Felice R, Rotondi M (2011) Fluid-particle drag force in binary-solid suspensions. Ind Eng Chem Res 011-01997f:1–37Google Scholar
  26. Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250CrossRefGoogle Scholar
  27. Duan Z, Muzychka YS (2008) Slip flow heat transfer in annular microchannels with constant heat flux. J Heat Transf 130:092401-1–092401-8Google Scholar
  28. Duan Z, Muzychka YS (2010) Effects of axial corrugated roughness on low Reynolds number slip flow and continuum flow in microtubes. J Heat Transf 132:041001-1–041001-9Google Scholar
  29. Eapen J, Rusconi R, Piazza R, Yip S (2010) The classical nature of thermal conduction in nanofluids. J Heat Transf 132:102402-1–102402-14CrossRefGoogle Scholar
  30. Ebrahimnia-Bajestan E, Niazmand H, Duangthongsuk W, Wongwises S (2011) Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int J Heat Mass Transf 54:4376–4388MATHCrossRefGoogle Scholar
  31. EI-Genk MS, Yang IH (2008) Friction numbers and viscous dissipation heating for laminar flows of water in microtubes. J Heat Transf 130:082405-1–082405-13Google Scholar
  32. Einstein A (1906) Eine neue Bestimmung der Molekuldimensionen. Ann Phys 19:289–306MATHCrossRefGoogle Scholar
  33. Esparza HE (2012) Heat transfer enhancement in laminar microchannel flow by Monte Carlo simulations. M.S. Thesis, San Antonio, UTGoogle Scholar
  34. Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88:093116CrossRefGoogle Scholar
  35. Fan J, Wang L (2011) Heat conduction in nanofluids: structure-property correlation. Int J Heat Mass Transf 54:4349–4359MathSciNetMATHCrossRefGoogle Scholar
  36. Fantoni R, Giacometti A, Sciortino F, Pastore G (2010) Cluster theory of Janus particles. Soft Matter R Soc Chem 7:2419–2427CrossRefGoogle Scholar
  37. Farbar L, Depew CA (1963) Heat transfer effects to gas-solids mixtures in a circular tube. Ind Eng Chem Fundam 2:130–135CrossRefGoogle Scholar
  38. Frenkel N, Acrivos A (1967) On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 6:847–853Google Scholar
  39. Gao JW, Zheng R, Ohtani H, Zhu DS, Chen G (2009) Experimental investigation of heat conduction in nanofluids. Clue on clustering. Nano Lett 9:4128–4132CrossRefGoogle Scholar
  40. Ghadimi A, Saidur R, Metselaar HSC (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54:4051–4068CrossRefGoogle Scholar
  41. Gibbs JW (1878) On the equilibrium of heterogeneous substances. In: The collective works of J. Willard Gibbs. Longmans, New YorkGoogle Scholar
  42. Goicochea JV, Madrid M, Amon C (2010) Thermal properties for bulk silicon based on the determination of relaxation times using molecular dynamics. J Heat Transf 132:012401-1–012401-11Google Scholar
  43. Granger R, Penninck S, Michaelides EE (2012) A critical review of nanofluid heat transfer – comparisons with particulate heat transfer on the macro-scale. In: ASME-IMECE, Houston, Nov 2012Google Scholar
  44. Gupta SS, Siva VM, Krishnan S, Sreeprasad TS, Singh PK, Pradeep T, Das SK (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 110:084302-1–084302-6Google Scholar
  45. Gurrum SP, King WP, Joshi YK, Ramakrishna K (2008) Size effect on the thermal conductivity of thin metallic films investigated by scanning joule expansion microscopy. J Heat Transf 130:082403-1–082403-8CrossRefGoogle Scholar
  46. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous component systems. Ind Eng Chem Fundam 1:187–191CrossRefGoogle Scholar
  47. Hasofer AM, Lind NC (1974) Exact and invariant second moment code format. J Eng Mech Div ASCE 100:111–121Google Scholar
  48. Heris SZ, Etemad SG, Esfahany MN (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf 33:529–535CrossRefGoogle Scholar
  49. Heyhat MM, Kowsary F (2010) Effect of particle migration on flow and convective heat transfer of nanofluids flowing through a circular pipe. J Heat Transf 132:062401-1–062401-9CrossRefGoogle Scholar
  50. Hong SW, Kang YT, Kleinstreuer C, Koo J (2011) Impact analysis of natural convection on thermal conductivity measurements of nanofluids using the transient hot-wire method. Int J Heat Mass Transf 54:3448–3456MATHCrossRefGoogle Scholar
  51. Hosseini MS, Mohebbi A, Ghader S (2011) Prediction of thermal conductivity and convective heat transfer coefficient of nanofluids by local composition theory. J Heat Transf 133:052401-1–052401-9CrossRefGoogle Scholar
  52. Huang KH, Lee C-W, Wang C-K (2011) Boiling enhancement by TiO2 nanoparticle deposition. Int J Heat Mass Transf 54:4895–4903CrossRefGoogle Scholar
  53. Jiji L (2008) Effect of rarefaction, dissipation, and accommodation coefficients on heat transfer in microcylindrical Couette flow. J Heat Transf 130:042404-1–042404-8CrossRefGoogle Scholar
  54. Ju YS, Kim J, Hung MT (2008) Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J Heat Transf 130:092403-1–092403-6Google Scholar
  55. Jung JY, Yoo JY (2009) Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL). Int J Heat Mass Transf 52:525–528CrossRefGoogle Scholar
  56. Jung JY, Cho C, Lee WH, Kang YT (2011) Thermal conductivity measurement and characterization of binary nanofluids. Int J Heat Mass Transf 54:1728–1733CrossRefGoogle Scholar
  57. Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187–3196MATHCrossRefGoogle Scholar
  58. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863MATHCrossRefGoogle Scholar
  59. Kestin J, Paul R, Shankland IR, Khalifa HE (1980) A high-temperature, high-pressure oscillating-disk viscometer for concentrated ionic solutions. Berichte der Bunsengesellschaft für physikalische Chemie 84:1255–1260. doi: 10.1002/bbpc.19800841212 CrossRefGoogle Scholar
  60. Khanafer K, Vafai K (2011) A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf 54:4410–4428MATHCrossRefGoogle Scholar
  61. Khiabani RH, Joshi Y, Aidun CK (2010) Heat transfer in microchannels with suspended solid particles: Lattice-Boltzmann based computations. J Heat Transf 132:041003-1–041003-9CrossRefGoogle Scholar
  62. Kim J-K, Jung JY, Kang YT (2006) The effect of nano-particles on the bubble absorption performance in a binary nanofluid. Int J Refrigeration 29:22–29CrossRefGoogle Scholar
  63. Kim S, Kim C, Lee WH, Park SR (2011) Rheological properties of alumina nanofluids and their implication to the heat transfer enhancement mechanism. J Appl Phys 110:034316-1–034316-6Google Scholar
  64. Kolade B, Goodson KE, Eaton JK (2009) Convective performance of nanofluids in a laminar thermally developing tube flow. J Heat Transf 131:052402-1–052402-8CrossRefGoogle Scholar
  65. Komati S, Suresh AK (2009) Anomalous enhancement of interphase transport rates by nanoparticles: effect of magnetic iron oxide on gas-liquid mass transfer. Ind Eng Chem Res 49(1):390–405CrossRefGoogle Scholar
  66. Kondaraju S, Jin EK, Lee JS (2010) Direct numerical simulation of thermal conductivity of nanofluids: the effect of temperature two-way coupling and coagulation of particles. Int J Heat Mass Transf 53:862–869MATHCrossRefGoogle Scholar
  67. Koo J, Kleinstreuter C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588CrossRefGoogle Scholar
  68. Koo J, Kleinstreuter C (2005a) Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass Transf 32:1111–1118CrossRefGoogle Scholar
  69. Koo J, Kleinstreuter C (2005b) Laminar nanofluid flow in microheat sinks. Int J Heat Mass Transf 48:2652–2661MATHCrossRefGoogle Scholar
  70. Krieger IM (1959) A mechanism for non-newtonian flow in a suspension of rigid spheres. Trans Soc Reol 3:137–152CrossRefGoogle Scholar
  71. Krieger IM (1972) Rheology of polydisperse latices. Adv Colloid Interface Sci 71:622–624Google Scholar
  72. Krieger IM, Eguiluz M (1976) The second electroviscous effect in polymer lattices. Trans Soc Rheol 20:29–45CrossRefGoogle Scholar
  73. Krishna K, Ganapathy H, Sateesh G, Das S (2011) Pool boiling characteristics of metallic nanofluids. J Heat Transf 133:111501-1–111501-8CrossRefGoogle Scholar
  74. Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93:144301-1–144301-4CrossRefGoogle Scholar
  75. Kuravi S, Kota KM, Du J, Chow LC (2009) Numerical investigation of flow and heat transfer performance of nano-encapsulated phase change material slurry in microchannels. J Heat Transf 131:062901-1–062901-9CrossRefGoogle Scholar
  76. Lai WY, Vinod S, Phelan PE, Prasher R (2009) Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube. J Heat Transf 131:112401-1–112401-9Google Scholar
  77. Lance M, Bataille J (1991) Turbulence in the liquid phase of a uniform bubbly air-water flow. J Fluid Mech 222:95–118CrossRefGoogle Scholar
  78. Lee D, Kim JW, Kim BG (2006) A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B 110:4323–4328CrossRefGoogle Scholar
  79. Lee HJ, Liu DY, Alyousef Y, Yao S (2010a) Generalized two-phase pressure drop and heat transfer correlations in evaporative micro/minichannels. J Heat Transf 132:041004-1–041004-9Google Scholar
  80. Lee J, Gharagozloo P, Kolade B, Eaton J, Goodson K (2010b) Nanofluid convection in microtubes. J Heat Transf 132:092401-1–092401-5Google Scholar
  81. Lee SW, Park SD, Kang S, Bang IC, Kim JH (2011) Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int J Heat Mass Transf 54:433–438MATHCrossRefGoogle Scholar
  82. Li T, Benyahia S (2011) Revisiting Johnson and Jackson boundary conditions for granular flows. AIChE J 57:1–11Google Scholar
  83. Li J, Kleinstreuer C (2010) Entropy generation analysis for nanofluid flow in microchannels. J Heat Transf 132:122401-1–122401-8CrossRefGoogle Scholar
  84. Li CH, Peterson GP (2007) Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids). Int J Heat Mass Transf 50:4668–4677MATHCrossRefGoogle Scholar
  85. Li X, Wang T (2008) Two-phase flow simulation of mist film cooling on turbine blades with conjugate internal cooling. J Heat Transf 130:102901-1–102901-8Google Scholar
  86. Liu MS, Lin MCC, Tsai CY, Wang CC (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49:3028–3033CrossRefGoogle Scholar
  87. Lohse D, Luther S, Rensen J, van den Berg TH, Mazzitelli I, Toschi F (2004) Turbulent bubbly flow. In: Proceedings of 5th international conference on multiphase flow, Yokohama, JapanGoogle Scholar
  88. Lundgren TS (1972) Slow flow through stationary random beds and suspensions of spheres. J Fluid Mech 51:273–299MATHCrossRefGoogle Scholar
  89. Luo T, Lloyd JR (2008) Ab initio molecular dynamics study of nanoscale thermal energy transport. J Heat Transf 130:122403-1–122403-7CrossRefGoogle Scholar
  90. Mahbubul IM, Saidur R, Amalina MA (2012) Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf 55:874–885Google Scholar
  91. Masoumi N, Sohrabi N, Behzadmehr A (2009) A new model for calculating the effective viscosity of nanofluids. J Appl Phys 42(055501):1–6Google Scholar
  92. Maxwell JC (1881) A treatise on electricity and magnetism, 2nd edn. Clarendon, OxfordGoogle Scholar
  93. Mazzitelli I, Venturoli M, Melchionna S, Succi S (2011) Towards a mesoscopic model of water-like fluids with hydrodynamic interactions. J Chem Phys 135:124902-1–124902-10CrossRefGoogle Scholar
  94. Michaelides EE (1986) Heat transfer in particulate flows. Int J Heat Mass Transf 29(2):265–273CrossRefGoogle Scholar
  95. Michaelides EE (2006) Particles, bubbles and drops – their motion, heat and mass transfer. World Scientific, Hackensack, NJCrossRefGoogle Scholar
  96. Michaelides EE, Feng Z-G (1994) Heat transfer from a rigid sphere in a non-uniform flow and temperature field. Int J Heat Mass Transf 37:2069–2076MATHCrossRefGoogle Scholar
  97. Millikan RA (1923) The general law of fall of a small spherical body through a gas and its bearing upon the nature of molecular reflection from surfaces, Phys. Phys Rev 22:1–23CrossRefGoogle Scholar
  98. Mooney M (1951) The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 6:162–170CrossRefGoogle Scholar
  99. Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699CrossRefGoogle Scholar
  100. Nan CW, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375:666–669CrossRefGoogle Scholar
  101. Nedea SV, Markvoort AJ, van Steenhoven AA, Hilbers PAJ (2009) Heat transfer predictions for micro/nanochannels at the atomistic level using combined molecular dynamics and Monte Carlo techniques. J Heat Transf 131:033104-1–033104-8CrossRefGoogle Scholar
  102. Nguyen CT, Desgranges F, Roy G, Galanis N, Marie T, Boucher S, Mintsa HA (2007) Temperature and particle-size dependent viscosity data for water based nanofluids–hysteresis phenomenon. Int J Heat Fluid Flow 28:1492–1506CrossRefGoogle Scholar
  103. Nie C, Marlow WH, Hassan YA (2008) Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids. Int J Heat Mass Transf 51:1342–1348MATHCrossRefGoogle Scholar
  104. O’Hanley H, Buongiorno J, McKrell T, Ho L (2012) Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv Mech Eng. doi: 10.1155/2012/181079
  105. Olle B et al (2006) Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Ind Eng Chem Res 45(12):4355–4363CrossRefGoogle Scholar
  106. Pak B-C, Cho Y (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170CrossRefGoogle Scholar
  107. Pfeffer R, Rosetti S, Liclein S (1966) Analysis and correlation of heat transfer coefficient and friction factor data for dilute gas-solids suspensions. NASA report TN D-3603. NASA, Washington, DCGoogle Scholar
  108. Philip J, Sharma PD, Raj B (2008) Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19:305706CrossRefGoogle Scholar
  109. Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901CrossRefGoogle Scholar
  110. Prasher RS, Bhattacharya P, Phelan PE (2006a) Brownian motion based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595CrossRefGoogle Scholar
  111. Prasher R, Evans W, Meaking P, Fish J, Phelan P, Keblinski P (2006b) Effects of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett 89:143119CrossRefGoogle Scholar
  112. Probstein RF (1994) Physicochemical hydrodynamics, 2nd edn. Elsevier, New YorkCrossRefGoogle Scholar
  113. Randrianalisoa J, Baillis D (2008) Monte Carlo simulation of steady-state microscale phonon heat transport. J Heat Transf 130:072404-1–072404-13CrossRefGoogle Scholar
  114. Russel WR, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, CambridgeGoogle Scholar
  115. Sarkar S, Selvam RP (2009) Direct numerical simulation of heat transfer in spray cooling through 3D multiphase flow modeling using parallel computing. J Heat Transf 131:121007-1–121007-8CrossRefGoogle Scholar
  116. Schluderberg DC, Whitelaw RL, Carlson RW (1961) Gaseous suspensions – a new reactor coolant. Nucleonics 19:67–76Google Scholar
  117. Shin D, Banerjee D (2010) Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic. Int J Struct Changes Solids 2:25–31Google Scholar
  118. Shin D, Banerjee D (2011) Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf 54:1064–1070CrossRefGoogle Scholar
  119. Shukla R, Dhir V (2008) Effect of Brownian motion on thermal conductivity of nanofluids. J Heat Transf 130:042406-1–042406-13CrossRefGoogle Scholar
  120. Talbot L, Cheng RK, Schefer RW, Willis DR (1980) Thermophoresis of particles in a heated boundary layer. J Fluid Mech 101:737–758CrossRefGoogle Scholar
  121. Taylor TD (1963) Heat transfer from single spheres in a low Reynolds number slip flow. Phys Fluids 6(7):987–992CrossRefGoogle Scholar
  122. Tien CL, Lienhard JH (1979) Statistical thermodynamics, revised. Hemisphere, New YorkGoogle Scholar
  123. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev WV, Sprunt S, Lopatina LM, Sellinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203CrossRefGoogle Scholar
  124. Torii S, Yang WJ (2009) Heat transfer augmentation of aqueous suspensions of nano-diamonds in turbulent pipe flow. J Heat Transf 131:043203-1–043203-5CrossRefGoogle Scholar
  125. Torii D, Ohara T, Ishida K (2010) Molecular-scale mechanism of thermal resistance at the solid-liquid interfaces: influence of interaction parameters between solid and liquid molecules. J Heat Transf 132:012402-1–012402-9CrossRefGoogle Scholar
  126. Tran-Cong S, Gay M, Michaelides EE (2004) Drag coefficients of irregularly shaped particles. Powder Technol 139:21–32CrossRefGoogle Scholar
  127. Tseng WJ, Chen CN (2003) Effect of polymeric dispersant on rheological behavior of nickel–terpineol suspensions. Mater Sci Eng A347:145–153Google Scholar
  128. Tseng WJ, Lin KC (2003) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng A355:186–192Google Scholar
  129. Tzou DY (2008) Instability of nanofluids in natural convection. J Heat Transf 130:072401-1–072401-9CrossRefGoogle Scholar
  130. Vrabec J, Horsch M, Hasse H (2009) Molecular dynamics based analysis of nucleation and surface energy of droplets in supersaturated vapors of methane and ethane. J Heat Transf 131:043202-1–043202-4CrossRefGoogle Scholar
  131. Wachtell GP, Wagener JP, Steigelman WH (1961) Evaluation of gas-graphite suspensions as nuclear reactor coolants. Report NYO-9672 AEC. Franklin Institute, Philadelphia, PACrossRefGoogle Scholar
  132. Wamkam CT, Opoku MK, Hong H, Smith P (2011) Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles. J Appl Phys 109:024305-1–024305-5CrossRefGoogle Scholar
  133. Wang L, Wei X (2009) Nanofluids: synthesis, heat conduction, and extension. J Heat Transf 131:033102-1–033102-7Google Scholar
  134. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle fluid mixture. J Thermophys Heat Transf 13:474–480CrossRefGoogle Scholar
  135. Wen D (2008) Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF). Int J Heat Mass Transf 51:4958–4965MATHCrossRefGoogle Scholar
  136. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188CrossRefGoogle Scholar
  137. Wen D, Ding Y (2005) Experimental investigation into the pool boiling heat transfer applications. Int J Heat Fluid Flow 26:855–864CrossRefGoogle Scholar
  138. Williams W, Buongiorno J, Hu LW (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf 130:042412CrossRefGoogle Scholar
  139. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155CrossRefGoogle Scholar
  140. Xue QZ (2003) Model for effective thermal conductivity of nanofluids. Phys Lett A 307:313–317CrossRefGoogle Scholar
  141. Xue QZ, Keblinski P, Philpot SR, Choi SUS, Eastman JA (2004) Effect of liquid layering at the liquid–solid interface on thermal transport. Int J Heat Mass Transf 47:4277–4284MATHCrossRefGoogle Scholar
  142. Yang B (2008) Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (Nanofluids). J Heat Transf 130:042408-1–042408-5Google Scholar
  143. You SM, Kim JH, Kim KH (2003) Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 83:3374–3376CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Efstathios E. Stathis Michaelides
    • 1
  1. 1.Department of EngineeringTexas Christian UniversityFort WorthUSA

Personalised recommendations