Skip to main content

Preclinical Modeling in Lymphoid Malignancies

  • Chapter
  • First Online:
  • 1109 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Non-Hodgkin’s lymphoma (NHL) is one of the most common cancers in the United States, accounting for about 4% of all cancers. In spite of aggressive chemotherapy and management, a majority of the patients relapse, making refractory NHL one of the dreaded nightmares for oncologists. Laboratory studies conducted on tumor cell lines, primary tumor cells isolated from cancer patients, and murine models contribute significantly to development of cancer therapeutics. The heterogeneity of the disease, limited availability of the biopsies, and variability of the disease in patients have necessitated the development of animal models to evaluate potential drug therapies. Moreover, the preclinical models also help us to understand the pathogenesis of the disease and the role of immune system in lymphoma. As we enter into an era of targeted therapeutics, these models provide new platforms for designing new anti-lymphoma drugs. In this chapter, we summarize the various tumor cell lines and murine models including tumor xenografts, syngeneic models, genetically engineered mice, and humanized mice used to study the initiation and growth of lymphoma, lymphoma microenvironment, and efficacy of new therapies. Later in the chapter, we also discuss the advantages and disadvantages of each model and explain how each of them aid in understanding of the pathogenesis of lymphoma and interactions between tumors and host environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Miyoshi I, Kubonishi I, Yoshimoto S et al (1981) Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature 294:770–771

    Article  PubMed  CAS  Google Scholar 

  3. Matsuo Y, Drexler HG (1998) Establishment and characterization of human B cell precursor-leukemia cell lines. Leuk Res 22:567–579

    Article  PubMed  CAS  Google Scholar 

  4. Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344

    Article  PubMed  CAS  Google Scholar 

  5. Osborne HB, Bakke AC, Yu J (1982) Effect of dexamethasone on hexamethylene bisacetamide-induced Friend cell erythrodifferentiation. Cancer Res 42:513–518

    PubMed  CAS  Google Scholar 

  6. Nakamura T, Nishizawa T, Hagiya M et al (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342:440–443

    Article  PubMed  CAS  Google Scholar 

  7. Massague J (1990) The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641

    Article  PubMed  CAS  Google Scholar 

  8. Boncinelli E, Simeone A, Acampora D, Mavilio F (1991) HOX gene activation by retinoic acid. Trends Genet 7:329–334

    PubMed  CAS  Google Scholar 

  9. Burgess AW, Metcalf D (1980) The nature and action of granulocyte-macrophage colony ­stimulating factors. Blood 56:947–958

    PubMed  CAS  Google Scholar 

  10. Metcalf D (1989) The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339:27–30

    Article  PubMed  CAS  Google Scholar 

  11. Cross M, Dexter TM (1991) Growth factors in development, transformation, and tumorigenesis. Cell 64:271–280

    Article  PubMed  CAS  Google Scholar 

  12. Rossi GB, Friend C (1967) Erythrocytic maturation of (Friend) virus-induced leukemic cells in spleen clones. Proc Natl Acad Sci U S A 58:1373–1380

    Article  PubMed  CAS  Google Scholar 

  13. Ghetie MA, Richardson J, Tucker T et al (1990) Disseminated or localized growth of a human B-cell tumor (Daudi) in SCID mice. Int J Cancer 45:481–485

    Article  PubMed  CAS  Google Scholar 

  14. Schmid J, Moller P, Moldenhauer G et al (1993) Monoclonal antibody uptake in B-cell lymphomas: experimental studies in nude mouse xenografts. Cancer Immunol Immunother 36:274–280

    Article  PubMed  CAS  Google Scholar 

  15. Hernandez-Ilizaliturri FJ, Jupudy V, Ostberg J et al (2003) Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res 9:5866–5873

    PubMed  CAS  Google Scholar 

  16. Hernandez-Ilizaliturri FJ, Jupudy V, Reising S et al (2005) Concurrent administration of granulocyte colony-stimulating factor or granulocyte-monocyte colony-stimulating factor enhances the biological activity of rituximab in a severe combined immunodeficiency mouse lymphoma model. Leuk Lymphoma 46:1775–1784

    Article  PubMed  CAS  Google Scholar 

  17. Hernandez-Ilizaliturri FJ, Reddy N, Holkova B et al (2005) Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model. Clin Cancer Res 11:5984–5992

    Article  PubMed  CAS  Google Scholar 

  18. Donnou S, Galand C, Daussy C et al (2011) Immune adaptive microenvironment profiles in intracerebral and intrasplenic lymphomas share common characteristics. Clin Exp Immunol 165:329–337

    Article  PubMed  CAS  Google Scholar 

  19. Touitou V, Daussy C, Bodaghi B et al (2007) Impaired th1/tc1 cytokine production of tumor-infiltrating lymphocytes in a model of primary intraocular B-cell lymphoma. Invest Ophthalmol Vis Sci 48:3223–3229

    Article  PubMed  Google Scholar 

  20. Houot R, Levy R (2009) T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood 113:3546–3552

    Article  PubMed  CAS  Google Scholar 

  21. Harnack U, Eckert K, Fichtner I, Pecher G (2009) Oral administration of a soluble 1-3, 1-6 beta-glucan during prophylactic survivin peptide vaccination diminishes growth of a B cell lymphoma in mice. Int Immunopharmacol 9:1298–1303

    Article  PubMed  CAS  Google Scholar 

  22. Palmieri C, Falcone C, Iaccino E et al (2010) In vivo targeting and growth inhibition of the A20 murine B-cell lymphoma by an idiotype-specific peptide binder. Blood 116:226–238

    Article  PubMed  CAS  Google Scholar 

  23. Alvarez E, Moga E, Barquinero J et al (2010) Dendritic and tumor cell fusions transduced with adenovirus encoding CD40L eradicate B-cell lymphoma and induce a Th17-type response. Gene Ther 17:469–477

    Article  PubMed  CAS  Google Scholar 

  24. Golay J, Cittera E, Di Gaetano N et al (2006) The role of complement in the therapeutic activity of rituximab in a murine B lymphoma model homing in lymph nodes. Haematologica 91:176–183

    PubMed  CAS  Google Scholar 

  25. Dayde D, Ternant D, Ohresser M et al (2009) Tumor burden influences exposure and response to rituximab: pharmacokinetic-pharmacodynamic modeling using a syngeneic bioluminescent murine model expressing human CD20. Blood 113:3765–3772

    Article  PubMed  CAS  Google Scholar 

  26. Donnou S, Galand C, Touitou V et al (2012) Murine models of B-cell lymphomas: promising tools for designing cancer therapies. Adv Hematol 2012:701704

    PubMed  Google Scholar 

  27. Croce CM, Erikson J, ar-Rushdi A et al (1984) The translocated c-myc oncogene of Burkitt lymphoma is differentially regulated in lymphoblastoid vs. plasma cells. Curr Top Microbiol Immunol 113:133–145

    Article  PubMed  CAS  Google Scholar 

  28. Mori S, Rempel RE, Chang JT et al (2008) Utilization of pathway signatures to reveal distinct types of B lymphoma in the Emicro-myc model and human diffuse large B-cell lymphoma. Cancer Res 68:8525–8534

    Article  PubMed  CAS  Google Scholar 

  29. Kovalchuk AL, Qi CF, Torrey TA et al (2000) Burkitt lymphoma in the mouse. J Exp Med 192:1183–1190

    Article  PubMed  CAS  Google Scholar 

  30. Sheppard RD, Samant SA, Rosenberg M et al (1998) Transgenic N-myc mouse model for indolent B cell lymphoma: tumor characterization and analysis of genetic alterations in spontaneous and retrovirally accelerated tumors. Oncogene 17:2073–2085

    Article  PubMed  CAS  Google Scholar 

  31. Greenwald RJ, Tumang JR, Sinha A et al (2004) E mu-BRD2 transgenic mice develop B-cell lymphoma and leukemia. Blood 103:1475–1484

    Article  PubMed  CAS  Google Scholar 

  32. Motokura T, Arnold A (1993) Cyclins and oncogenesis. Biochim Biophys Acta 1155:63–78

    PubMed  CAS  Google Scholar 

  33. Bertoni F, Rinaldi A, Zucca E, Cavalli F (2006) Update on the molecular biology of mantle cell lymphoma. Hematol Oncol 24:22–27

    Article  PubMed  CAS  Google Scholar 

  34. Dreyling M, Hoster E, Bea S et al (2010) Update on the molecular pathogenesis and clinical treatment of Mantle Cell Lymphoma (MCL): minutes of the 9th European MCL Network conference. Leuk Lymphoma 51:1612–1622

    Article  PubMed  Google Scholar 

  35. Lovec H, Grzeschiczek A, Kowalski MB, Moroy T (1994) Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J 13:3487–3495

    PubMed  CAS  Google Scholar 

  36. Jares P, Colomer D, Campo E (2007) Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 7:750–762

    Article  PubMed  CAS  Google Scholar 

  37. Bodrug SE, Warner BJ, Bath ML et al (1994) Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 13:2124–2130

    PubMed  CAS  Google Scholar 

  38. Ford RJ, Shen L, Lin-Lee YC et al (2007) Development of a murine model for blastoid variant mantle-cell lymphoma. Blood 109:4899–4906

    Article  PubMed  CAS  Google Scholar 

  39. Yan JS, Chen XY, Li WP et al (2009) Establishing SCID mouse models of B-cell non-­Hodgkin’s lymphoma. Ai Zheng 28:181–183

    PubMed  Google Scholar 

  40. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6:443–446

    Article  PubMed  CAS  Google Scholar 

  41. Cartron G, Dacheux L, Salles G et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758

    Article  PubMed  CAS  Google Scholar 

  42. Munn DH, Cheung NK (1987) Interleukin-2 enhancement of monoclonal antibody-mediated cellular cytotoxicity against human melanoma. Cancer Res 47:6600–6605

    PubMed  CAS  Google Scholar 

  43. de Romeuf C, Dutertre CA, Le Garff-Tavernier M et al (2008) Chronic lymphocytic leukaemia cells are efficiently killed by an anti-CD20 monoclonal antibody selected for improved engagement of FcgammaRIIIA/CD16. Br J Haematol 140:635–643

    Article  PubMed  Google Scholar 

  44. Mossner E, Brunker P, Moser S et al (2010) Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115:4393–4402

    Article  PubMed  CAS  Google Scholar 

  45. Barth MJ, Hernandez-Ilizaliturri FJ, Mavis C et al (2012) Ofatumumab demonstrates activity against rituximab-sensitive and -resistant cell lines, lymphoma xenografts and primary tumour cells from patients with B-cell lymphoma. Br J Haematol 156:490–498

    Article  PubMed  CAS  Google Scholar 

  46. Reddy N, Hernandez-Ilizaliturri FJ, Deeb G et al (2008) Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. Br J Haematol 140:36–45

    PubMed  CAS  Google Scholar 

  47. Ackler S, Xiao Y, Mitten MJ et al (2008) ABT-263 and rapamycin act cooperatively to kill lymphoma cells in vitro and in vivo. Mol Cancer Ther 7:3265–3274

    Article  PubMed  CAS  Google Scholar 

  48. Wang W, Kardosh A, Su YS et al (2006) Efficacy of celecoxib in the treatment of CNS ­lymphomas: an in vivo model. Neurosurg Focus 21:E14

    Article  PubMed  Google Scholar 

  49. Muta D, Makino K, Nakamura H et al (2011) Inhibition of eIF4E phosphorylation reduces cell growth and proliferation in primary central nervous system lymphoma cells. J Neurooncol 101:33–39

    Article  PubMed  CAS  Google Scholar 

  50. Gerber HP, Kung-Sutherland M, Stone I et al (2009) Potent antitumor activity of the anti-CD19 auristatin antibody drug conjugate hBU12-vcMMAE against rituximab-sensitive and -resistant lymphomas. Blood 113:4352–4361

    Article  PubMed  CAS  Google Scholar 

  51. Macchiarini F, Manz MG, Palucka AK, Shultz LD (2005) Humanized mice: are we there yet? J Exp Med 202:1307–1311

    Article  PubMed  CAS  Google Scholar 

  52. Sato F, Ito A, Ishida T et al (2010) A complement-dependent cytotoxicity-enhancing ­anti-CD20 antibody mediating potent antitumor activity in the humanized NOD/Shi-scid, IL-2Rgamma(null) mouse lymphoma model. Cancer Immunol Immunother 59:1791–1800

    Article  PubMed  CAS  Google Scholar 

  53. Ge Y, Xi H, Zhang XG (2010) Vaccination with immature dendritic cells combined with CD40mAb induces protective immunity against B lymphoma in hu-SCID mice. Biomed Pharmacother 64:487–492

    Article  PubMed  CAS  Google Scholar 

  54. Gladue RP, Paradis T, Cole SH et al (2011) The CD40 agonist antibody CP-870,893 enhances dendritic cell and B-cell activity and promotes anti-tumor efficacy in SCID-hu mice. Cancer Immunol Immunother 60:1009–1017

    Article  PubMed  CAS  Google Scholar 

  55. Illidge T, Honeychurch J, Howatt W et al (2000) A new in vivo and in vitro B cell lymphoma model, pi-BCL1. Cancer Biother Radiopharm 15:571–580

    Article  PubMed  CAS  Google Scholar 

  56. Timmerman JM, Caspar CB, Lambert SL et al (2001) Idiotype-encoding recombinant adenoviruses provide protective immunity against murine B-cell lymphomas. Blood 97:1370–1377

    Article  PubMed  CAS  Google Scholar 

  57. Meijerink JP, Van Lieshout EM, Beverloo HB et al (2005) Novel murine B-cell lymphoma/leukemia model to study BCL2-driven oncogenesis. Int J Cancer 114:917–925

    Article  PubMed  CAS  Google Scholar 

  58. Chaise C, Itti E, Petegnief Y et al (2007) [F-18]-Fluoro-2-deoxy-D: -glucose positron emission tomography as a tool for early detection of immunotherapy response in a murine B cell lymphoma model. Cancer Immunol Immunother 56:1163–1171

    Article  PubMed  Google Scholar 

  59. Curti A, Pandolfi S, Valzasina B et al (2007) Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+ T regulatory cells. Blood 109:2871–2877

    PubMed  CAS  Google Scholar 

  60. Yu D, Thomas-Tikhonenko A (2002) A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis. Oncogene 21:1922–1927

    Article  PubMed  CAS  Google Scholar 

  61. Robertson KA, Usherwood EJ, Nash AA (2001) Regression of a murine gammaherpesvirus 68-positive b-cell lymphoma mediated by CD4 T lymphocytes. J Virol 75:3480–3482

    Article  PubMed  CAS  Google Scholar 

  62. Enno A, O’Rourke JL, Howlett CR et al (1995) MALToma-like lesions in the murine gastric mucosa after long-term infection with Helicobacter felis. A mouse model of Helicobacter pylori-induced gastric lymphoma. Am J Pathol 147:217–222

    PubMed  CAS  Google Scholar 

  63. Penichet ML, Dela Cruz JS, Challita-Eid PM et al (2001) A murine B cell lymphoma expressing human HER2/neu undergoes spontaneous tumor regression and elicits antitumor immunity. Cancer Immunol Immunother 49:649–662

    Article  PubMed  CAS  Google Scholar 

  64. Mineo JF, Scheffer A, Karkoutly C et al (2008) Using human CD20-transfected murine lymphomatous B cells to evaluate the efficacy of intravitreal and intracerebral rituximab injections in mice. Invest Ophthalmol Vis Sci 49:4738–4745

    Article  PubMed  Google Scholar 

  65. Shimada MO, Yamada Y, Nakakuki Y et al (1993) SL/KH strain of mice: a model of spontaneous pre-B-lymphomas. Leuk Res 17:573–578

    Article  PubMed  CAS  Google Scholar 

  66. Fredrickson TN, Lennert K, Chattopadhyay SK et al (1999) Splenic marginal zone lymphomas of mice. Am J Pathol 154:805–812

    Article  PubMed  CAS  Google Scholar 

  67. Egle A, Harris AW, Bath ML et al (2004) VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 103:2276–2283

    Article  PubMed  CAS  Google Scholar 

  68. Cattoretti G, Pasqualucci L, Ballon G et al (2005) Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7:445–455

    Article  PubMed  CAS  Google Scholar 

  69. Field KA, Charoenthongtrakul S, Bishop JM, Refaeli Y (2008) Farnesyl transferase inhibitors induce extended remissions in transgenic mice with mature B cell lymphomas. Mol Cancer 7:39

    Article  PubMed  Google Scholar 

  70. Kasama Y, Sekiguchi S, Saito M et al (2010) Persistent expression of the full genome of hepatitis C virus in B cells induces spontaneous development of B-cell lymphomas in vivo. Blood 116:4926–4933

    Article  PubMed  CAS  Google Scholar 

  71. Puebla-Osorio N, Miyahara Y, Coimbatore S et al (2011) Induction of B-cell lymphoma by UVB radiation in p53 haploinsufficient mice. BMC Cancer 11:36

    Article  PubMed  CAS  Google Scholar 

  72. Tefferi A, Thiele J, Orazi A et al (2007) Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 110:1092–1097

    Article  PubMed  CAS  Google Scholar 

  73. Daniel D, Yang B, Lawrence DA et al (2007) Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood 110:4037–4046

    Article  PubMed  CAS  Google Scholar 

  74. Muldoon LL, Lewin SJ, Dosa E et al (2011) Imaging and therapy with rituximab anti-CD20 immunotherapy in an animal model of central nervous system lymphoma. Clin Cancer Res 17:2207–2215

    Article  PubMed  CAS  Google Scholar 

  75. Stein R, Qu Z, Chen S et al (2006) Characterization of a humanized IgG4 anti-HLA-DR monoclonal antibody that lacks effector cell functions but retains direct antilymphoma activity and increases the potency of rituximab. Blood 108:2736–2744

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Hernandez-Ilizaliturri M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dawar, R., Hernandez-Ilizaliturri, F.J. (2013). Preclinical Modeling in Lymphoid Malignancies. In: Quesenberry, P., Castillo, J. (eds) Non-Hodgkin Lymphoma. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5851-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5851-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5850-0

  • Online ISBN: 978-1-4614-5851-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics