Skip to main content

Sphingolipid Metabolism and Signaling as a Target for Cancer Treatment

  • Chapter
  • First Online:
Cell Death Signaling in Cancer Biology and Treatment

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

Sphingolipids play key roles in the regulation of several biologic processes that are integral to cancer pathogenesis. Among the sphingolipid metabolites, ceramide and sphingosine-1-phosphate (S1P) have been shown to modulate cancer development and progression. The biologic roles of other metabolites, such as sphingosine, and ceramide 1-phosphate, are also beginning to emerge. In general, ceramide plays a role as a tumor-suppressing lipid-inducing anti-proliferative response such as cell cycle arrest, induction of apoptosis, and senescence whereas S1P plays a role as a tumor-promoting lipid-inducing transformation, cellular proliferation, and inflammation in various cell models. Glycosphingolipids, another emerging class of bioactive sphingolipids, are believed to play anti-apoptotic roles and offer drug resistance to currently used chemotherapeutic drugs. These emerging biologic roles of sphingolipids and its potential usefulness in treating cancer in the form of anticancer therapeutics are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References:

  1. Mandon EC, Ehses I, Rother J, van Echten G, Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem 267(16):11144–11148

    CAS  PubMed  Google Scholar 

  2. Michel C, van Echten-Deckert G (1997) Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Lett 416(2):153–155

    CAS  PubMed  Google Scholar 

  3. Tafesse FG, Ternes P, Holthuis JC (2006) The multigenic sphingomyelin synthase family. J Biol Chem 281(40):29421–29425

    CAS  PubMed  Google Scholar 

  4. Ichikawa S, Hirabayashi Y (1998) Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 8(5):198–202

    CAS  PubMed  Google Scholar 

  5. Shinghal R, Scheller RH, Bajjalieh SM (1993) Ceramide 1-phosphate phosphatase activity in brain. J Neurochem 61(6):2279–2285

    CAS  PubMed  Google Scholar 

  6. Marchesini N, Hannun YA (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol Biochimie et Biologie Cellulaire 82(1):27–44

    CAS  Google Scholar 

  7. Tettamanti G (2004) Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J 20(5):301–317

    CAS  PubMed  Google Scholar 

  8. Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta 1781(9):424–434

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 1758(12):2016–2026

    CAS  PubMed  Google Scholar 

  10. Johnson KR, Johnson KY, Becker KP, Bielawski J, Mao C, Obeid LM (2003) Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J Biol Chem 278(36):34541–34547

    CAS  PubMed  Google Scholar 

  11. Bandhuvula P, Saba JD (2007) Sphingosine-1-phosphate lyase in immunity and cancer: silencing the siren. Trends Mol Med 13(5):210–217

    CAS  PubMed  Google Scholar 

  12. Hanada K, Kumagai K, Tomishige N, Kawano M (2007) CERT and intracellular trafficking of ceramide. Biochim Biophys Acta 1771(6):644–653

    CAS  PubMed  Google Scholar 

  13. Yamaji T, Kumagai K, Tomishige N, Hanada K (2008) Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 60(8):511–518

    CAS  PubMed  Google Scholar 

  14. Tani M, Hannun YA (2007) Analysis of membrane topology of neutral sphingomyelinase 2. FEBS Lett 581(7):1323–1328

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    CAS  PubMed  Google Scholar 

  16. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50:S91–S96 Suppl

    PubMed Central  PubMed  Google Scholar 

  17. Hannun YA (1996) Functions of ceramide in coordinating cellular response to stress. Science 274:1855–1859

    CAS  PubMed  Google Scholar 

  18. Hannun YA, Obeid LM (2002) The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277:25847–25850

    CAS  PubMed  Google Scholar 

  19. Andrieu-Abadie N (2001) Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic Biol Med 31:717–718

    CAS  PubMed  Google Scholar 

  20. Ogretmen B, Hannun YA (2001) Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist Updat 4:368–377

    CAS  PubMed  Google Scholar 

  21. Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274(5294):1855–1859

    CAS  PubMed  Google Scholar 

  22. Chalfant CE, Ogretmen B, Galadari S, Kroesen BJ, Pettus BJ, Hannun YA (2001) FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J Biol Chem 276(48):44848–44855

    CAS  PubMed  Google Scholar 

  23. Kagedal K, Johansson U, Ollinger K (2001) The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J: Official Publ Fed Am Soc Exp Biol 15(9):1592–1594

    CAS  Google Scholar 

  24. Heinrich M, Wickel M, Winoto-Morbach S, Schneider-Brachert W, Weber T, Brunner J, Saftig P, Peters C, Kronke M, Schutze S (2000) Ceramide as an activator lipid of cathepsin D. Adv Exp Med Biol 477:305–315

    CAS  PubMed  Google Scholar 

  25. Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Saftig P, Peters C, Brunner J et al (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18(19):5252–5263

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R (1998) BAD enables ceramide to signal apoptosis via Ras and Raf-1. J Biol Chem 273(46):30419–30426

    CAS  PubMed  Google Scholar 

  27. Mathias S, Dressler KA, Kolesnick RN (1991) Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha. Proc Nat Acad Sci USA 88(22):10009–10013

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Yao B, Zhang Y, Delikat S, Mathias S, Basu S, Kolesnick R (1995) Phosphorylation of Raf by ceramide-activated protein kinase. Nature 378(6554):307–310

    CAS  PubMed  Google Scholar 

  29. Liu J, Mathias S, Yang Z, Kolesnick RN (1994) Renaturation and tumor necrosis factor-alpha stimulation of a 97-kDa ceramide-activated protein kinase. J Biol Chem 269(4):3047–3052

    CAS  PubMed  Google Scholar 

  30. Joseph CK, Byun HS, Bittman R, Kolesnick RN (1993) Substrate recognition by ceramide-activated protein kinase. Evidence that kinase activity is proline-directed. J Biol Chem 268(27):20002–20006

    CAS  PubMed  Google Scholar 

  31. Xing HR, Kolesnick R (2001) Kinase suppressor of Ras signals through Thr269 of c-Raf-1. J Biol Chem 276(13):9733–9741

    CAS  PubMed  Google Scholar 

  32. Basu S, Kolesnick R (1998) Stress signals for apoptosis: ceramide and c-Jun kinase. Oncogene 17(25):3277–3285

    PubMed  Google Scholar 

  33. Fox TE, Houck KL, O’Neill SM, Nagarajan M, Stover TC, Pomianowski PT, Unal O, Yun JK, Naides SJ, Kester M (2007) Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem 282(17):12450–12457

    CAS  PubMed  Google Scholar 

  34. Bourbon NA, Sandirasegarane L, Kester M (2002) Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J Biol Chem 277(5):3286–3292

    CAS  PubMed  Google Scholar 

  35. Payne SG, Milstien S, Spiegel S (2002) Sphingosine-1-phosphate: dual messenger functions. FEBS Lett 531:54–57

    CAS  PubMed  Google Scholar 

  36. Xia P, Wang L, Moretti PA, Albanese N, Chai F, Pitson SM, D’Andrea RJ, Gamble JR, Vadas MA (2002) Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. J Biol Chem 277(10):7996–8003

    CAS  PubMed  Google Scholar 

  37. French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL, Yun JK, Smith CD (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63(18):5962–5969

    CAS  PubMed  Google Scholar 

  38. Rylova SN, Somova OG, Dyatlovitskaya EV (1998) Comparative investigation of sphingoid bases and fatty acids in ceramides and sphingomyelins from human ovarian malignant tumors and normal ovary. Biochemistry 63:1057–1060

    CAS  PubMed  Google Scholar 

  39. Birbes H, El Bawab S, Hannun YA, Obeid LM (2001) Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J: Official Publ Fed Am Soc Exp Biol 15(14):2669–2679

    CAS  Google Scholar 

  40. Dai Q, Liu J, Chen J, Durrant D, McIntyre TM, Lee RM (2004) Mitochondrial ceramide increases in UV-irradiated HeLa cells and is mainly derived from hydrolysis of sphingomyelin. Oncogene 23(20):3650–3658

    CAS  PubMed  Google Scholar 

  41. Deng X, Yin X, Allan R, Lu DD, Maurer CW, Haimovitz-Friedman A, Fuks Z, Shaham S, Kolesnick R (2008) Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322(5898):110–115

    Google Scholar 

  42. Kroesen BJ, Pettus B, Luberto C, Busman M, Sietsma H, de Leij L, Hannun YA (2001) Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. J Biol Chem 276(17):13606–13614

    CAS  PubMed  Google Scholar 

  43. Eto M, Bennouna J, Hunter OC, Hershberger PA, Kanto T, Johnson CS, Lotze MT, Amoscato AA (2003) C16 ceramide accumulates following androgen ablation in LNCaP prostate cancer cells. Prostate 57(1):66–79

    CAS  PubMed  Google Scholar 

  44. Chalfant CE, Rathman K, Pinkerman RL, Wood RE, Obeid LM, Ogretmen B, Hannun YA (2002) De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J Biol Chem 277(15):12587–12595

    CAS  PubMed  Google Scholar 

  45. Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86(2):189–199

    CAS  PubMed  Google Scholar 

  46. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293(5528):293–297

    CAS  PubMed  Google Scholar 

  47. Pena LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60(2):321–327

    CAS  PubMed  Google Scholar 

  48. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A et al (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11(5):550–563

    CAS  PubMed  Google Scholar 

  49. Luberto C, Hassler DF, Signorelli P, Okamoto Y, Sawai H, Boros E, Hazen-Martin DJ, Obeid LM, Hannun YA, Smith GK (2002) Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 277(43):41128–41139

    CAS  PubMed  Google Scholar 

  50. Lee JT, Xu J, Lee JM, Ku G, Han X, Yang DI, Chen S, Hsu CY (2004) Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol 164(1):123–131

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Liu JJ, Wang JY, Hertervig E, Cheng Y, Nilsson A, Duan RD (2000) Activation of neutral sphingomyelinase participates in ethanol-induced apoptosis in Hep G2 cells. Alcohol Alcohol 35(6):569–573

    CAS  PubMed  Google Scholar 

  52. Testai FD, Landek MA, Dawson G (2004) Regulation of sphingomyelinases in cells of the oligodendrocyte lineage. J Neurosci Res 75(1):66–74

    CAS  PubMed  Google Scholar 

  53. Franzen R (2002) Nitric oxide induces degradation of the neutral ceramidase in rat renal mesangial cells and is counterregulated by protein kinase C. J Biol Chem 277:46184–46190

    CAS  PubMed  Google Scholar 

  54. Acharya U (2003) Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science 299:1740–1743

    CAS  PubMed  Google Scholar 

  55. Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM (1995) Role of ceramide in cellular senescence. J Biol Chem 270(51):30701–30708

    CAS  PubMed  Google Scholar 

  56. Venable ME, Yin X (2009) Ceramide induces endothelial cell senescence. Cell Biochem Funct 27(8):547–551

    CAS  PubMed  Google Scholar 

  57. Modrak DE, Leon E, Goldenberg DM, Gold DV (2009) Ceramide regulates gemcitabine-induced senescence and apoptosis in human pancreatic cancer cell lines. Mol Cancer Res: MCR 7(6):890–896

    CAS  PubMed  Google Scholar 

  58. Guillas I (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J 20:2655–2665

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015

    CAS  PubMed  Google Scholar 

  60. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33(5):787–791

    CAS  PubMed  Google Scholar 

  61. Ogretmen B, Schady D, Usta J, Wood R, Kraveka JM, Luberto C, Birbes H, Hannun YA, Obeid LM (2001) Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells. J Biol Chem 276(27):24901–24910

    CAS  PubMed  Google Scholar 

  62. Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem 264(32):19076–19080

    CAS  PubMed  Google Scholar 

  63. Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA (1994) Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265(5178):1596–1599

    CAS  PubMed  Google Scholar 

  64. Fishbein JD, Dobrowsky RT, Bielawska A, Garrett S, Hannun YA (1993) Ceramide-mediated growth inhibition and CAPP are conserved in Saccharomyces cerevisiae. J Biol Chem 268(13):9255–9261

    CAS  PubMed  Google Scholar 

  65. Dbaibo GS (1995) Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci USA 92:1347–1351

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64(12):4286–4293

    CAS  PubMed  Google Scholar 

  67. Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A, Ghidoni R, Codogno P (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 279(18):18384–18391

    CAS  PubMed  Google Scholar 

  68. Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen EL, Schneider C (2006) Calpain is required for macroautophagy in mammalian cells. J Cell Biol 175(4):595–605

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Bedia C, Triola G, Casas J, Llebaria A, Fabrias G (2005) Analogs of the dihydroceramide desaturase inhibitor GT11 modified at the amide function: synthesis and biological activities. Org Biomol Chem 3(20):3707–3712

    CAS  PubMed  Google Scholar 

  70. Signorelli P, Munoz-Olaya JM, Gagliostro V, Casas J, Ghidoni R, Fabrias G (2009) Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett 282(2):238–243

    CAS  PubMed  Google Scholar 

  71. Zeng X, Overmeyer JH, Maltese WA (2006) Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119(Pt 2):259–270

    CAS  PubMed  Google Scholar 

  72. Zhou H, Summers SA, Birnbaum MJ, Pittman RN (1998) Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 273(26):16568–16575

    CAS  PubMed  Google Scholar 

  73. Schubert KM, Scheid MP, Duronio V (2000) Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem 275(18):13330–13335

    CAS  PubMed  Google Scholar 

  74. Dickson RC (2008) Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 49(5):909–921

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Cowart LA, Obeid LM (2007) Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta 1771(3):421–431

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL (2008) Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Nat Acad Sci USA 105(45):17402–17407

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Van Brocklyn JR, Young N, Roof R (2003) Sphingosine-1-phosphate stimulates motility and invasiveness of human glioblastoma multiforme cells. Cancer Lett 199(1):53–60

    PubMed  Google Scholar 

  78. Nava VE, Hobson JP, Murthy S, Milstien S, Spiegel S (2002) Sphingosine kinase type 1 promotes estrogen-dependent tumorigenesis of breast cancer MCF-7 cells. Exp Cell Res 281(1):115–127

    CAS  PubMed  Google Scholar 

  79. Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW, D’Andrea RJ, Vadas MA (2000) An oncogenic role of sphingosine kinase. Curr Biol: CB 10(23):1527–1530

    CAS  PubMed  Google Scholar 

  80. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381(6585):800–803

    CAS  PubMed  Google Scholar 

  81. Visentin B, Vekich JA, Sibbald BJ, Cavalli AL, Moreno KM, Matteo RG, Garland WA, Lu Y, Yu S, Hall HS et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9(3):225–238

    CAS  PubMed  Google Scholar 

  82. Castillo SS, Teegarden D (2003) Sphingosine-1-phosphate inhibition of apoptosis requires mitogen-activated protein kinase phosphatase-1 in mouse fibroblast C3H10T 1/2 cells. J Nutr 133(11):3343–3349

    CAS  PubMed  Google Scholar 

  83. Suomalainen L, Pentikainen V, Dunkel L (2005) Sphingosine-1-phosphate inhibits nuclear factor kappaB activation and germ cell apoptosis in the human testis independently of its receptors. Am J Pathol 166(3):773–781

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Licht T, Tsirulnikov L, Reuveni H, Yarnitzky T, Ben-Sasson SA (2003) Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3). Blood 102(6):2099–2107

    CAS  PubMed  Google Scholar 

  85. Argraves KM, Wilkerson BA, Argraves WS, Fleming PA, Obeid LM, Drake CJ (2004) Sphingosine-1-phosphate signaling promotes critical migratory events in vasculogenesis. J Biol Chem 279(48):50580–50590

    CAS  PubMed  Google Scholar 

  86. Wu W, Shu X, Hovsepyan H, Mosteller RD, Broek D (2003) VEGF receptor expression and signaling in human bladder tumors. Oncogene 22(22):3361–3370

    CAS  PubMed  Google Scholar 

  87. Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, Volpi M, Sha’afi RI, Hla T (1999) Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99(3):301–312

    CAS  PubMed  Google Scholar 

  88. Bayless KJ, Davis GE (2003) Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem Biophys Res Commun 312(4):903–913

    CAS  PubMed  Google Scholar 

  89. Yonesu K, Kawase Y, Inoue T, Takagi N, Tsuchida J, Takuwa Y, Kumakura S, Nara F (2009) Involvement of sphingosine-1-phosphate and S1P1 in angiogenesis: analyses using a new S1P1 antagonist of non-sphingosine-1-phosphate analog. Biochem Pharmacol 77(6):1011–1020

    CAS  PubMed  Google Scholar 

  90. LaMontagne K, Littlewood-Evans A, Schnell C, O’Reilly T, Wyder L, Sanchez T, Probst B, Butler J, Wood A, Liau G et al (2006) Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization. Cancer Res 66(1):221–231

    CAS  PubMed  Google Scholar 

  91. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ et al (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Investig 106(8):951–961

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25(24):11113–11121

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Xia P, Gamble JR, Rye KA, Wang L, Hii CS, Cockerill P, Khew-Goodall Y, Bert AG, Barter PJ, Vadas MA (1998) Tumor necrosis factor-alpha induces adhesion molecule expression through the sphingosine kinase pathway. Proc Nat Acad Sci USA 95(24):14196–14201

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR, Morrow J, Chalfant CE, Obeid LM, Hannun YA (2003) The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. FASEB J: Official Publ Fed Am Soc Exp Biol 17(11):1411–1421

    CAS  Google Scholar 

  95. Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, Dheen ST (2010) Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166(1):132–144

    CAS  PubMed  Google Scholar 

  96. Hammad SM, Crellin HG, Wu BX, Melton J, Anelli V, Obeid LM (2008) Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins Other Lipid Mediat 85(3–4):107–114

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Snider AJ (2010) Orr Gandy KA, Obeid LM: Sphingosine kinase: Role in regulation of bioactive sphingolipid mediators in inflammation. Biochimie 92(6):707–715

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Massiello A, Salas A, Pinkerman RL, Roddy P, Roesser JR, Chalfant CE (2004) Identification of two RNA cis-elements that function to regulate the 5′ splice site selection of Bcl-x pre-mRNA in response to ceramide. J Biol Chem 279(16):15799–15804

    CAS  PubMed  Google Scholar 

  99. Gomez-Munoz A, Kong JY, Parhar K, Wang SW, Gangoiti P, Gonzalez M, Eivemark S, Salh B, Duronio V, Steinbrecher UP (2005) Ceramide-1-phosphate promotes cell survival through activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett 579(17):3744–3750

    CAS  PubMed  Google Scholar 

  100. Nava VE, Cuvillier O, Edsall LC, Kimura K, Milstien S, Gelmann EP, Spiegel S (2000) Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells. Cancer Res 60(16):4468–4474

    CAS  PubMed  Google Scholar 

  101. Sweeney EA, Sakakura C, Shirahama T, Masamune A, Ohta H, Hakomori S, Igarashi Y (1996) Sphingosine and its methylated derivative N, N-dimethylsphingosine (DMS) induce apoptosis in a variety of human cancer cell lines. Int J Cancer J Int du Cancer 66(3):358–366

    CAS  Google Scholar 

  102. Sawai H, Okazaki T, Domae N (2002) Sphingosine-induced c-jun expression: differences between sphingosine- and C2-ceramide-mediated signaling pathways. FEBS Lett 524(1–3):103–106

    CAS  PubMed  Google Scholar 

  103. Phillips DC, Martin S, Doyle BT, Houghton JA (2007) Sphingosine-induced apoptosis in rhabdomyosarcoma cell lines is dependent on pre-mitochondrial Bax activation and post-mitochondrial caspases. Cancer Res 67(2):756–764

    CAS  PubMed  Google Scholar 

  104. Guan F, Handa K, Hakomori SI (2009) Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines. Proc Nat Acad Sci USA 106(18):7461–7466

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Bremer EG, Schlessinger J, Hakomori S (1986) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 261(5):2434–2440

    CAS  PubMed  Google Scholar 

  106. Zhou Q, Hakomori S, Kitamura K, Igarashi Y (1994) GM3 directly inhibits tyrosine phosphorylation and de-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor–receptor interaction. J Biol Chem 269(3):1959–1965

    CAS  PubMed  Google Scholar 

  107. Meuillet EJ, Kroes R, Yamamoto H, Warner TG, Ferrari J, Mania-Farnell B, George D, Rebbaa A, Moskal JR, Bremer EG (1999) Sialidase gene transfection enhances epidermal growth factor receptor activity in an epidermoid carcinoma cell line, A431. Cancer Res 59(1):234–240

    CAS  PubMed  Google Scholar 

  108. Coskun U, Grzybek M, Drechsel D, Simons K (2011) Regulation of human EGF receptor by lipids. Proc Nat Acad Sci USA 108(22):9044–9048

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4(8):604–616

    CAS  PubMed  Google Scholar 

  110. Bose R (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82:405–414

    CAS  PubMed  Google Scholar 

  111. Perry DK (2000) Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J Biol Chem 275:9078–9084

    CAS  PubMed  Google Scholar 

  112. Chauvier D, Morjani H, Manfait M (2002) Ceramide involvement in homocamptothecin- and camptothecin-induced cytotoxicity and apoptosis in colon HT29 cells. Int J Oncol 20:855–863

    CAS  PubMed  Google Scholar 

  113. Strum JC (1994) 1-[beta]-D-Arabinofuranosylcytosine stimulates ceramide and digylceride formation in HL-60 cells. J Biol Chem 269:15493–15497

    CAS  PubMed  Google Scholar 

  114. Bezombes C (2001) Oxidative stress-induced activation of Lyn recruits sphingomyelinase and is requisite for its stimulation by Ara-C. FASEB J 15:1583–1585

    CAS  PubMed  Google Scholar 

  115. Dbaibo GS (1998) p53-dependent ceramide response to genotoxic stress. J Clin Invest 102:329–339

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Selzner M, Bielawska A, Morse MA, Rudiger HA, Sindram D, Hannun YA, Clavien PA (2001) Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 61(3):1233–1240

    CAS  PubMed  Google Scholar 

  117. Meng A, Luberto C, Meier P, Bai A, Yang X, Hannun YA, Zhou D (2004) Sphingomyelin synthase as a potential target for D609-induced apoptosis in U937 human monocytic leukemia cells. Exp Cell Res 292(2):385–392

    CAS  PubMed  Google Scholar 

  118. Modrak DE, Cardillo TM, Newsome GA, Goldenberg DM, Gold DV (2004) Synergistic interaction between sphingomyelin and gemcitabine potentiates ceramide-mediated apoptosis in pancreatic cancer. Cancer Res 64(22):8405–8410

    CAS  PubMed  Google Scholar 

  119. Veldman RJ, Zerp S, van Blitterswijk WJ, Verheij M (2004) N-hexanoyl-sphingomyelin potentiates in vitro doxorubicin cytotoxicity by enhancing its cellular influx. Br J Cancer 90(4):917–925

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Radin NS (2003) Killing tumours by ceramide-induced apoptosis: a critique of available drugs. Biochem J 371(Pt 2):243–256

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Bieberich E, Kawaguchi T, Yu RK (2000) N-acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J Biol Chem 275(1):177–181

    CAS  PubMed  Google Scholar 

  122. Bieberich E (2002) Synthesis and characterization of novel ceramide analogs for induction of apoptosis in human cancer cells. Cancer Lett 181:55–64

    CAS  PubMed  Google Scholar 

  123. Struckhoff AP (2004) Novel ceramide analogs as potential chemotherapeutic agents in breast cancer. J Pharmacol Exp Ther 309:523–532

    CAS  PubMed  Google Scholar 

  124. Crawford KW (2003) Novel ceramide analogs display selective cytotoxicity in drug-resistant breast tumor cell lines compared to normal breast epithelial cells. Cell Mol Biol 49:1017–1023

    CAS  PubMed  Google Scholar 

  125. Dindo D, Dahm F, Szulc Z, Bielawska A, Obeid LM, Hannun YA, Graf R, Clavien PA (2006) Cationic long-chain ceramide LCL-30 induces cell death by mitochondrial targeting in SW403 cells. Mol Cancer Ther 5(6):1520–1529

    CAS  PubMed  Google Scholar 

  126. Senkal CE, Ponnusamy S, Rossi MJ, Sundararaj K, Szulc Z, Bielawski J, Bielawska A, Meyer M, Cobanoglu B, Koybasi S et al (2006) Potent antitumor activity of a novel cationic pyridinium-ceramide alone or in combination with gemcitabine against human head and neck squamous cell carcinomas in vitro and in vivo. J Pharmacol Exp Ther 317(3):1188–1199

    CAS  PubMed  Google Scholar 

  127. Rossi MJ, Sundararaj K, Koybasi S, Phillips MS, Szulc ZM, Bielawska A, Day TA, Obeid LM, Hannun YA, Ogretmen B (2005) Inhibition of growth and telomerase activity by novel cationic ceramide analogs with high solubility in human head and neck squamous cell carcinoma cells. Otolaryngol Head Neck Surg 132(1):55–62

    Google Scholar 

  128. Novgorodov SA, Szulc ZM, Luberto C, Jones JA, Bielawski J, Bielawska A, Hannun YA, Obeid LM (2005) Positively charged ceramide is a potent inducer of mitochondrial permeabilization. J Biol Chem 280(16):16096–16105

    CAS  PubMed  Google Scholar 

  129. Stover T, Kester M (2003) Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. J Pharmacol Exp Ther 307:468–475

    CAS  PubMed  Google Scholar 

  130. Thomas DA, Sarris AH, Cortes J, Faderl S, O’Brien S, Giles FJ, Garcia-Manero G, Rodriguez MA, Cabanillas F, Kantarjian H (2006) Phase II study of sphingosomal vincristine in patients with recurrent or refractory adult acute lymphocytic leukemia. Cancer 106(1):120–127

    CAS  PubMed  Google Scholar 

  131. Shirahama T, Sweeney EA, Sakakura C, Singhal AK, Nishiyama K, Akiyama S, Hakomori S, Igarashi Y (1997) In vitro and in vivo induction of apoptosis by sphingosine and N, N-dimethylsphingosine in human epidermoid carcinoma KB-3-1 and its multidrug-resistant cells. Clinical cancer research : an official journal of the American Association for Cancer Research 3(2):257–264

    CAS  Google Scholar 

  132. Sweeney EA (1996) Sphingosine and its methylated derivative N, N-dimethylsphingosine (DMS) induce apoptosis in a variety of human cancer cell lines. Int J Cancer 66:358–366

    CAS  PubMed  Google Scholar 

  133. Cuvillier O, Levade T (2001) Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood 98(9):2828–2836

    CAS  PubMed  Google Scholar 

  134. Tilly JL, Kolesnick RN (2002) Sphingolipids, apoptosis, cancer treatments and the ovary: investigating a crime against female fertility. Biochim Biophys Acta 1585(2–3):135–138

    CAS  PubMed  Google Scholar 

  135. Suomalainen L, Hakala JK, Pentikainen V, Otala M, Erkkila K, Pentikainen MO, Dunkel L (2003) Sphingosine-1-phosphate in inhibition of male germ cell apoptosis in the human testis. J Clin Endocrinol Metab 88(11):5572–5579

    CAS  PubMed  Google Scholar 

  136. Graler MH, Goetzl EJ (2004) The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G protein-coupled receptors. FASEB J 10

    Google Scholar 

  137. Billich A (2003) Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J Biol Chem 278:47408–47415

    CAS  PubMed  Google Scholar 

  138. Paugh SW (2003) The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett 554:189–193

    CAS  PubMed  Google Scholar 

  139. Azuma H (2002) Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models. Cancer Res 62:1410–1419

    Google Scholar 

  140. Wang JD (1999) Early induction of apoptosis in androgen-independent prostate cancer cell line by FTY720 requires caspase-3 activation. Prostate 40:50–55

    CAS  PubMed  Google Scholar 

  141. Sonoda Y (2001) FTY720, a novel immunosuppressive agent, induces apoptosis in human glioma cells. Biochem Biophys Res Commun 281:282–288

    CAS  PubMed  Google Scholar 

  142. Azuma H (2003) Induction of apoptosis in human bladder cancer cells in vitro and in vivo caused by FTY720 treatment. J Urol 169:2372–2377

    CAS  PubMed  Google Scholar 

  143. Dudeja PK, Dahiya R, Brasitus TA (1986) The role of sphingomyelin synthetase and sphingomyelinase in 1, 2-dimethylhydrazine-induced lipid alterations of rat colonic plasma membranes. Biochim Biophys Acta 863(2):309–312

    CAS  PubMed  Google Scholar 

  144. Dillehay DL, Webb SK, Schmelz EM, Merrill AH Jr (1994) Dietary sphingomyelin inhibits 1, 2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr 124(5):615–620

    CAS  PubMed  Google Scholar 

  145. Schmelz EM, Dillehay DL, Webb SK, Reiter A, Adams J, Merrill AH Jr (1996) Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1, 2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res 56(21):4936–4941

    CAS  PubMed  Google Scholar 

  146. Schmelz EM, Bushnev AS, Dillehay DL, Sullards MC, Liotta DC, Merrill AH Jr (1999) Ceramide-beta-D-glucuronide: synthesis, digestion, and suppression of early markers of colon carcinogenesis. Cancer Res 59(22):5768–5772

    CAS  PubMed  Google Scholar 

  147. Schmelz EM, Bushnev AS, Dillehay DL, Liotta DC, Merrill AH Jr (1997) Suppression of aberrant colonic crypt foci by synthetic sphingomyelins with saturated or unsaturated sphingoid base backbones. Nutr Cancer 28(1):81–85

    CAS  PubMed  Google Scholar 

  148. Mazzei JC, Zhou H, Brayfield BP, Hontecillas R, Bassaganya-Riera J, Schmelz EM (2011) Suppression of intestinal inflammation and inflammation-driven colon cancer in mice by dietary sphingomyelin: importance of peroxisome proliferator-activated receptor gamma expression. J Nutr Biochem 22(12):1160–1171

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Bleicher RJ, Cabot MC (2002) Glucosylceramide synthase and apoptosis. Biochim Biophys Acta 1585:172–178

    CAS  PubMed  Google Scholar 

  150. Liu X, Ryland L, Yang J, Liao A, Aliaga C, Watts R, Tan SF, Kaiser J, Shanmugavelandy SS, Rogers A et al (2010) Targeting of survivin by nanoliposomal ceramide induces complete remission in a rat model of NK-LGL leukemia. Blood 116(20):4192–4201

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Liu YY (2001) Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J 15:719–730

    CAS  PubMed  Google Scholar 

  152. Liu YY (2004) Oligonucleotides blocking glucosylceramide synthase expression selectively reverse drug resistance in cancer cells. J Lipid Res 45:933–940

    CAS  PubMed  Google Scholar 

  153. Gouaze V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC (2005) Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res 65(9):3861–3867

    CAS  PubMed  Google Scholar 

  154. Gouaze-Andersson V, Yu JY, Kreitenberg AJ, Bielawska A, Giuliano AE, Cabot MC (2007) Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochim Biophys Acta 1771(12):1407–1417

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Weiss M (2003) Inhibition of melanoma tumor growth by a novel inhibitor of glucosylceramide synthase. Cancer Res 63:3654–3658

    CAS  PubMed  Google Scholar 

  156. Wang H, Maurer BJ, Liu YY, Wang E, Allegood JC, Kelly S, Symolon H, Liu Y, Merrill AH Jr, Gouaze-Andersson V et al (2008) N-(4-Hydroxyphenyl)retinamide increases dihydroceramide and synergizes with dimethylsphingosine to enhance cancer cell killing. Mol Cancer Ther 7(9):2967–2976

    CAS  PubMed  Google Scholar 

  157. Rahmaniyan M, Curley RW Jr, Obeid LM, Hannun YA, Kraveka JM (2011) Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide. J Biol Chem 286(28):24754–24764

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Maurer BJ (1999) Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)-retinamide in neuroblastoma cell lines. J Natl Cancer Inst 91:1138–1146

    CAS  PubMed  Google Scholar 

  159. Maurer BJ (2000) Synergistic cytotoxicity in solid tumor cell lines between N-(4-hydroxyphenyl)retinamide and modulators of ceramide metabolism. J Natl Cancer Inst 92:1897–1909

    CAS  PubMed  Google Scholar 

  160. Bektas M, Jolly PS, Muller C, Eberle J, Spiegel S, Geilen CC (2005) Sphingosine kinase activity counteracts ceramide-mediated cell death in human melanoma cells: role of Bcl-2 expression. Oncogene 24(1):178–187

    CAS  PubMed  Google Scholar 

  161. Akao Y, Banno Y, Nakagawa Y, Hasegawa N, Kim TJ, Murate T, Igarashi Y, Nozawa Y (2006) High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation. Biochem Biophys Res Commun 342(4):1284–1290

    CAS  PubMed  Google Scholar 

  162. Marfe G, Di Stefano C, Gambacurta A, Ottone T, Martini V, Abruzzese E, Mologni L, Sinibaldi-Salimei P, de Fabritis P, Gambacorti-Passerini C et al (2011) Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. Exp Hematol 39(6):653–665 e656

    Google Scholar 

Download references

Acknowledgments

We thank Benjamin Newcomb for his critical review of this chapter. We also thank the members of Yusuf Hannun and Lina Obeid laboratory for their helpful discussion. We apologize to those investigators whose important works were not included in this chapter because of the space limitations. The Yusuf Hannun laboratory is supported by research grants from the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf A. Hannun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rajagopalan, V., Hannun, Y.A. (2013). Sphingolipid Metabolism and Signaling as a Target for Cancer Treatment. In: Johnson, D. (eds) Cell Death Signaling in Cancer Biology and Treatment. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5847-0_8

Download citation

Publish with us

Policies and ethics