Skip to main content

New Agents and Approaches for Targeting the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR Cell Survival Pathways

  • Chapter
  • First Online:
Cell Death Signaling in Cancer Biology and Treatment

Abstract

The Ras/Raf/MEK/ERK and PI3K/Akt/mTOR cascades are often activated by genetic alterations, either by mutations in upstream signaling molecules or by mutations in intrinsic pathway components. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic, and differentiation pathways. Dysregulation of components of these pathways can contribute to: malignant transformation, resistance to other pathway inhibitors, and chemotherapeutic drug resistance. This chapter will first briefly describe these pathways and then evaluate potential uses of Raf, MEK, PI3K, Akt, and mTOR inhibitors that have been investigated in preclinical and clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA et al (2011) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2(3):135–164

    PubMed Central  PubMed  Google Scholar 

  2. McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F et al (2011) Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3 K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol 226(11):2762–2781

    CAS  PubMed  Google Scholar 

  3. Hayashi K, Shibata K, Morita T, Iwasaki K, Watanabe M, Sobue K (2004) Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells. J Biol Chem 279(39):40807–40818

    CAS  PubMed  Google Scholar 

  4. Mischak H, Seitz T, Janosch P, Eulitz M, Steen H, Schellerer M et al (1996) Negative regulation of Raf-1 by phosphorylation of serine 621. Mol Cell Biol 16(10):5409–5418

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, Hemmings BA et al (2000) Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 275(29):22300–22304

    CAS  PubMed  Google Scholar 

  6. Brennan DF, Dar AC, Hertz NT, Chao WC, Burlingame AL, Shokat KM et al (2011) A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature 472(7343):366–369

    CAS  PubMed  Google Scholar 

  7. McKay MM, Ritt DA, Morrison DK (2011) RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling. Curr Biol 21(7):563–568

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Pao W, Girard N (2011) New driver mutations in non-small-cell lung cancer. Lancet Oncol 12(2):175–180

    CAS  PubMed  Google Scholar 

  9. Topisirovic I, Sonenberg N (2011) mRNA translation and energy metabolism in cancer: the role of the MAPK and mTORC1 pathways. Cold Spring Harb Symp Quant Biol 28:28

    Google Scholar 

  10. Xing J, Ginty DD, Greenberg ME (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273(5277):959–963

    CAS  PubMed  Google Scholar 

  11. Balan V, Leicht DT, Zhu J, Balan K, Kaplun A, Singh-Gupta V et al (2006) Identification of novel in vivo Raf-1 phosphorylation sites mediating positive feedback Raf-1 regulation by extracellular signal-regulated kinase. Mol Biol Cell 17(3):1141–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD et al (2005) Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell 17(2):215–224

    CAS  PubMed  Google Scholar 

  13. Catalanotti F, Reyes G, Jesenberger V, Galabova-Kovacs G, de Matos Simoes R, Carugo O et al (2009) A Mek1-Mek2 heterodimer determines the strength and duration of the Erk signal. Nat Struct Mol Biol 16(3):294–303

    CAS  PubMed  Google Scholar 

  14. Sturm OE, Orton R, Grindlay J, Birtwistle M, Vyshemirsky V, Gilbert D et al (2010) The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci Signal 3(153)

    Google Scholar 

  15. Martelli AM, Evangelisti C, Chappell W, Abrams SL, Basecke J, Stivala F et al (2011) Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia 25(7):1064–1079

    CAS  PubMed  Google Scholar 

  16. Martelli AM, Chiarini F, Evangelisti C, Cappellini A, Buontempo F, Bressanin D et al (2012) Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget 3(4):371–394

    Google Scholar 

  17. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P et al (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 3(3):192–222

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269

    CAS  PubMed  Google Scholar 

  19. Coffer PJ, Woodgett JR (1992) Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 205(3):1217

    CAS  PubMed  Google Scholar 

  20. Gonzalez E, McGraw TE (2009) The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8(16):2502–2508

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273(49):32377–32379

    CAS  PubMed  Google Scholar 

  22. Brennan P, Babbage JW, Burgering BM, Groner B, Reif K, Cantrell DA (1997) Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7(5):679–689

    CAS  PubMed  Google Scholar 

  23. Kane LP, Shapiro VS, Stokoe D, Weiss A (1999) Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9(11):601–604

    CAS  PubMed  Google Scholar 

  24. Buitenhuis M, Coffer PJ (2009) The role of the PI3K-PKB signaling module in regulation of hematopoiesis. Cell Cycle 8(4):560–566

    CAS  PubMed  Google Scholar 

  25. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278(5338):687–689

    PubMed  Google Scholar 

  26. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789

    CAS  PubMed  Google Scholar 

  27. Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 4:127–150

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Weng LP, Brown JL, Baker KM, Ostrowski MC, Eng C (2002) PTEN blocks insulin-mediated ETS-2 phosphorylation through MAP kinase, independently of the phosphoinositide 3-kinase pathway. Hum Mol Genet 11(15):1687–1696

    CAS  PubMed  Google Scholar 

  29. Mahimainathan L, Choudhury GG (2004) Inactivation of platelet-derived growth factor receptor by the tumor suppressor PTEN provides a novel mechanism of action of the phosphatase. J Biol Chem 279(15):15258–15268

    CAS  PubMed  Google Scholar 

  30. Krymskaya VP, Goncharova EA (2009) PI3K/mTORC1 activation in hamartoma syndromes: therapeutic prospects. Cell Cycle 8(3):403–413

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Tamburini J, Green AS, Chapuis N, Bardet V, Lacombe C, Mayeux P et al (2009) Targeting translation in acute myeloid leukemia: a new paradigm for therapy? Cell Cycle 8(23):3893–3899

    CAS  PubMed  Google Scholar 

  32. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5):873–886 (Epub 2009 May 14)

    Google Scholar 

  33. Sato T, Nakashima A, Guo L, Tamanoi F (2009) Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 284(19):12783–12791 (Epub 2009 Mar 19)

    Google Scholar 

  34. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6(1):91–99

    CAS  PubMed  Google Scholar 

  35. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA et al (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310(5754):1642–1646

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330(7503):1304–1305

    PubMed Central  PubMed  Google Scholar 

  37. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9(8):563–575

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Martinelli A, Chiarini F, Evangelisti C, Ognibene A, Bressanin D, Billi AM, Manzoli L, Cappellini A, McCubrey JA (2012) Targeting the liver kinase B1/AMP-dependent kinase pathway as a therapeutic strategy for hematologic malignancies. Expert Opinion Therapeutic Targets (In Press)

    Google Scholar 

  39. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118(9):3065–3074

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Hresko RC, Mueckler M (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280(49):40406–40416

    CAS  PubMed  Google Scholar 

  41. Liang C (2010) Negative regulation of autophagy. Cell Death Differ 17(12):1807–1815

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Poulikakos PI, Solit DB (2011) Resistance to MEK inhibitors: should we co-target upstream? Sci Signal 4(166)

    Google Scholar 

  43. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    CAS  PubMed  Google Scholar 

  44. Rimassa L, Santoro A (2009) Sorafenib therapy in advanced hepatocellular carcinoma: the SHARP trial. Expert Rev Anticancer Ther 9(6):739–745

    CAS  PubMed  Google Scholar 

  45. Cervello M, McCubrey JA, Cusimano A, Lampiasi N, Azzolina A, Montalto G (2012) Targeted therapy for hepatocellular carcinoma: novel agents on the horizon. Oncotarget 3(3):236–260

    PubMed Central  PubMed  Google Scholar 

  46. Smalley KS, Xiao M, Villanueva J, Nguyen TK, Flaherty KT, Letrero R et al (2009) CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene 28(1):85–94

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467(7315):596–599

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363(9):809–819

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Long G, Kefford RF, Carr PJA, Brown MP, Curtis M, Ma B, Lebowitz P, Kim KB, Kurzrock R, Flachook G(2010) Phase 1/2 study of GSK2118436, a selective inhibitor of V600 mutant (mut) BRAF kinase: evidence of activity in melanoma brain metastases (mets). Annals of Oncology. 21(LBA27 (supplement 8)):viii12

    Google Scholar 

  51. Kefford R, Arkenau H, Brown MP, Millward M, Infante JR, Long GV, et al (2010) Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. ASCO Meeting Abstracts 2010 June 14, 28(15_suppl):8503

    Google Scholar 

  52. Greger JG, Eastman SD, Zhang V, Bleam MR, Hughes AM, Smitheman KN et al (2012) Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther 11(4):909–920

    CAS  PubMed  Google Scholar 

  53. Whittaker S, Menard D, Kirk R, Ogilvie L, Hedley D, Zambon A et al (2010) A novel, selective and efficacious nanomolar pyridopyrazinone inhibitor of V600EBRAF. Cancer Res 70(20):8036–8044

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Hoeflich KP, Herter S, Tien J, Wong L, Berry L, Chan J et al (2009) Antitumor efficacy of the novel RAF inhibitor GDC-0879 is predicted by BRAFV600E mutational status and sustained extracellular signal-regulated kinase/mitogen-activated protein kinase pathway suppression. Cancer Res 69(7):3042–3051

    CAS  PubMed  Google Scholar 

  55. Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE et al (2008) Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 68(12):4853–4861

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Schwartz GK, Robertson S, Shen A, Wang E, Pace L, Dials H et al (2009) A phase I study of XL281, a selective oral RAF kinase inhibitor, in patients (Pts) with advanced solid tumors. ASCO Meeting Abstracts. 27(15S):3513 (2009 June 8)

    Google Scholar 

  57. Buchholz B, Klanke B, Schley G, Bollag G, Tsai J, Kroening S et al (2011) The Raf kinase inhibitor PLX5568 slows cyst proliferation in rat polycystic kidney disease but promotes renal and hepatic fibrosis. Nephrol Dial Transplant 26(11):3458–3465

    CAS  PubMed  Google Scholar 

  58. Zitzmann K, de Toni E, von Ruden J, Brand S, Goke B, Laubender RP et al (2011) The novel Raf inhibitor Raf265 decreases Bcl-2 levels and confers TRAIL-sensitivity to neuroendocrine tumour cells. Endocr Relat Cancer 18(2):277–285

    CAS  PubMed  Google Scholar 

  59. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schutz G et al (2011) Regorafenib (BAY 73–4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129(1):245–255

    CAS  PubMed  Google Scholar 

  60. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(Pt 1):95–105

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P et al (2004) Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 11(12):1192–1197

    CAS  PubMed  Google Scholar 

  62. Sebolt-Leopold JS (2008) Advances in the development of cancer therapeutics directed against the RAS-mitogen-activated protein kinase pathway. Clin Cancer Res 14(12):3651–3656

    CAS  PubMed  Google Scholar 

  63. McCubrey JA, Steelman LS, Abrams SL, Chappell WH, Russo S, Ove R et al (2010) Emerging MEK inhibitors. Expert Opin Emerg Drugs 15(2):203–223

    CAS  PubMed  Google Scholar 

  64. Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, et al (2007) AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Molecular Cancer Therapeutics. 6(8):2209–2219

    Google Scholar 

  65. Tai YT, Fulciniti M, Hideshima T, Song W, Leiba M, Li XF et al (2007) Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood 110(5):1656–1663

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ et al (2007) Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase 1/2 inhibitor. Clin Cancer Res 13(5):1576–1583

    CAS  PubMed  Google Scholar 

  67. Friday BB, Yu C, Dy GK, Smith PD, Wang L, Thibodeau SN et al (2008) BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res 68(15):6145–6153

    CAS  PubMed  Google Scholar 

  68. Yoon J, Koo KH, Choi KY (2011) MEK1/2 inhibitors AS703026 and AZD6244 may be potential therapies for KRAS mutated colorectal cancer that is resistant to EGFR monoclonal antibody therapy. Cancer Res 71(2):445–453

    CAS  PubMed  Google Scholar 

  69. Mohammad RM, Goustin AS, Aboukameel A, Chen B, Banerjee S, Wang G et al (2007) Preclinical Studies of TW-37, a New Nonpeptidic Small-Molecule Inhibitor of Bcl-2, in Diffuse Large Cell Lymphoma Xenograft Model Reveal Drug Action on Both Bcl-2 and Mcl-1. Clin Cancer Res 13(7):2226–2235

    CAS  PubMed  Google Scholar 

  70. Haura EB, Ricart AD, Larson TG, Stella PJ, Bazhenova L, Miller VA et al (2010) A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res 16(8):2450–2457

    CAS  PubMed  Google Scholar 

  71. LoRusso PM, Krishnamurthi SS, Rinehart JJ, Nabell LM, Malburg L, Chapman PB et al (2010) Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res 16(6):1924–1937

    CAS  PubMed  Google Scholar 

  72. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439(7074):358–362

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Iverson C, Larson G, Lai C, Yeh LT, Dadson C, Weingarten P et al (2009) RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. Cancer Res 69(17):6839–6847

    CAS  PubMed  Google Scholar 

  74. Hoeflich KP, Merchant M, Orr C, Chan J, Den Otter D, Berry L et al (2012) Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res 72(1):210–219

    CAS  PubMed  Google Scholar 

  75. Kim K, Kong SY, Fulciniti M, Li X, Song W, Nahar S et al (2010) Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br J Haematol 149(4):537–549

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Lee TX, Packer MD, Huang J, Akhmametyeva EM, Kulp SK, Chen CS et al (2009) Growth inhibitory and anti-tumour activities of OSU-03012, a novel PDK-1 inhibitor, on vestibular schwannoma and malignant schwannoma cells. Eur J Cancer 45(9):1709–1720

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Dong Q, Dougan DR, Gong X, Halkowycz P, Jin B, Kanouni T et al (2011) Discovery of TAK-733, a potent and selective MEK allosteric site inhibitor for the treatment of cancer. Bioorg Med Chem Lett 21(5):1315–1319

    CAS  PubMed  Google Scholar 

  78. Longoni R, Spina L, Vinci S, Acquas E (2011) The MEK inhibitor SL327 blocks acquisition but not expression of lithium-induced conditioned place aversion: a behavioral and immunohistochemical study. Psychopharmacology 216(1):63–73

    CAS  PubMed  Google Scholar 

  79. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464(7287):427–430

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Konopleva M, Milella M, Ruvolo P, Watts JC, Ricciardi MR, Korchin B et al (2012) MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 26(4):778–787

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Ricciardi MR, Scerpa MC, Bergamo P, Ciuffreda L, Petrucci MT, Chiaretti S et al (2012) Therapeutic potential of MEK inhibition in acute myelogenous leukemia: rationale for “vertical” and “lateral” combination strategies. J Mol Med 8:8

    Google Scholar 

  82. Aronov AM, Tang Q, Martinez-Botella G, Bemis GW, Cao J, Chen G et al (2009) Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of extracellular signal-regulated kinase (ERK) using conformational control. J Med Chem 52(20):6362–6368

    CAS  PubMed  Google Scholar 

  83. Hatzivassiliou G, Liu B, O’Brien C, Spoerke JM, Hoeflich KP, Haverty PM et al (2012) ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol Cancer Ther 11(5):1143–1154

    CAS  PubMed  Google Scholar 

  84. Ihle NT, Williams R, Chow S, Chew W, Berggren MI, Paine-Murrieta G et al (2004) Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther 3(7):763–772

    CAS  PubMed  Google Scholar 

  85. Burrows N, Babur M, Resch J, Ridsdale S, Mejin M, Rowling EJ et al (2011) GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by targeting both the phosphoinositide-3 kinase (PI3K) and hypoxia-inducible factor-1alpha (HIF-1alpha) pathways. J Clin Endocrinol Metab 96(12):12

    Google Scholar 

  86. Zou ZQ, Zhang LN, Wang F, Bellenger J, Shen YZ, Zhang XH (2012) The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells. Mol Med Report 5(2):503–508

    CAS  Google Scholar 

  87. Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F et al (2005) Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 106(3):1063–1066

    CAS  PubMed  Google Scholar 

  88. Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, Vanhaesebroeck B et al (2006) A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 25(50):6648–6659

    CAS  PubMed  Google Scholar 

  89. Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L et al (2008) Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 111(1):379–382

    CAS  PubMed  Google Scholar 

  90. Workman P, van Montfort RL (2010) PI(3) kinases: revealing the delta lady. Nat Chem Biol 6(2):82–83

    CAS  PubMed  Google Scholar 

  91. Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI et al (2010) The p110delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Nat Chem Biol 6(3):244

    CAS  PubMed  Google Scholar 

  92. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ et al (2011) CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117(2):591–594

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Meadows SA, Vega F, Kashishian A, Johnson D, Diehl V, Miller LL et al (2012) PI3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 119(8):1897–1900

    CAS  PubMed  Google Scholar 

  94. Gale S, Croasdell G (2010) 28th Annual JPMorgan healthcare conference–forest laboratories and Icagen. IDrugs 13(3):145–148

    PubMed  Google Scholar 

  95. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D et al (2012) Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther 11(2):317–328

    CAS  PubMed  Google Scholar 

  96. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D et al (2012) Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol 30(3):282–290

    CAS  PubMed  Google Scholar 

  97. Brachmann S, Fritsch C, Maira SM, Garcia-Echeverria C (2009) PI3K and mTOR inhibitors: a new generation of targeted anticancer agents. Curr Opin Cell Biol 21(2):194–198

    CAS  PubMed  Google Scholar 

  98. Molckovsky A, Siu LL (2008) First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American society of clinical oncology meeting. J Hematol Oncol 1:20

    PubMed Central  PubMed  Google Scholar 

  99. Xu CX, Li Y, Yue P, Owonikoko TK, Ramalingam SS, Khuri FR et al (2011) The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PLoS One 6(6):14

    CAS  Google Scholar 

  100. Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D et al (2006) A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9(5):341–349

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Fan QW, Cheng CK, Nicolaides TP, Hackett CS, Knight ZA, Shokat KM et al (2007) A dual phosphoinositide-3-kinase alpha/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res 67(17):7960–7965

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C et al (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7(7):1851–1863

    CAS  PubMed  Google Scholar 

  103. Chapuis N, Tamburini J, Green AS, Vignon C, Bardet V, Neyret A et al (2010) Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res 16(22):5424–5435

    CAS  PubMed  Google Scholar 

  104. Chiarini F, Fala F, Tazzari PL, Ricci F, Astolfi A, Pession A et al (2009) Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res 69(8):3520–3528

    CAS  PubMed  Google Scholar 

  105. Chiarini F, Grimaldi C, Ricci F, Tazzari PL, Evangelisti C, Ognibene A et al (2010) Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res 70(20):8097–8107

    CAS  PubMed  Google Scholar 

  106. Schuster K, Zheng J, Arbini AA, Zhang CC, Scaglioni PP (2011) Selective targeting of the mTORC1/2 protein kinase complexes leads to antileukemic effects in vitro and in vivo. Blood Cancer J 1:e34

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Shuttleworth SJ, Silva FA, Cecil AR, Tomassi CD, Hill TJ, Raynaud FI et al (2011) Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Curr Med Chem 18(18):2686–2714

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Mallon R, Feldberg LR, Lucas J, Chaudhary I, Dehnhardt C, Santos ED et al (2011) Antitumor efficacy of PKI-587, a highly potent dual PI3K/mTOR kinase inhibitor. Clin Cancer Res 17(10):3193–3203 (Epub 2011 Feb 15)

    Google Scholar 

  109. Yuan J, Mehta PP, Yin MJ, Sun S, Zou A, Chen J et al (2011) PF-04691502, a potent and selective oral inhibitor of PI3K and mTOR kinases with antitumor activity. Mol Cancer Ther 10(11):2189–2199

    CAS  PubMed  Google Scholar 

  110. Mallon R, Hollander I, Feldberg L, Lucas J, Soloveva V, Venkatesan A et al (2010) Antitumor efficacy profile of PKI-402, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor. Mol Cancer Ther 9(4):976–984

    CAS  PubMed  Google Scholar 

  111. Prasad G, Sottero T, Yang X, Mueller S, James CD, Weiss WA et al (2011) Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro Oncol 13(4):384–392

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Mirzoeva OK, Hann B, Hom YK, Debnath J, Aftab D, Shokat K et al (2011) Autophagy suppression promotes apoptotic cell death in response to inhibition of the PI3K-mTOR pathway in pancreatic adenocarcinoma. J Mol Med 89(9):877–889

    CAS  PubMed  Google Scholar 

  113. Heffron TP, Berry M, Castanedo G, Chang C, Chuckowree I, Dotson J et al (2010) Identification of GNE-477, a potent and efficacious dual PI3K/mTOR inhibitor. Bioorg Med Chem Lett 20(8):2408–2411

    CAS  PubMed  Google Scholar 

  114. Wallin JJ, Edgar KA, Guan J, Berry M, Prior WW, Lee L et al (2011) GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol Cancer Ther 10(12):2426–2436

    CAS  PubMed  Google Scholar 

  115. Li T, Wang J, Wang X, Yang N, Chen SM, Tong LJ et al (2010) WJD008, a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin inhibitor, prevents PI3K signaling and inhibits the proliferation of transformed cells with oncogenic PI3K mutant. J Pharmacol Exp Ther 334(3):830–838

    CAS  PubMed  Google Scholar 

  116. Zhu J, Huang JW, Tseng PH, Yang YT, Fowble J, Shiau CW et al (2004) From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 64(12):4309–4318

    CAS  PubMed  Google Scholar 

  117. Ding H, Han C, Guo D, Wang D, Duan W, Chen CS et al (2008) Sensitivity to the non-COX inhibiting celecoxib derivative, OSU03012, is p21(WAF1/CIP1) dependent. Int J Cancer 123(12):2931–2938

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Falasca M, Chiozzotto D, Godage HY, Mazzoletti M, Riley AM, Previdi S et al (2010) A novel inhibitor of the PI3K/Akt pathway based on the structure of inositol 1,3,4,5,6-pentakisphosphate. Br J Cancer 102(1):104–114

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Yang L, Dan HC, Sun M, Liu Q, Sun XM, Feldman RI et al (2004) Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 64(13):4394–4399

    CAS  PubMed  Google Scholar 

  120. Garrett CR, Coppola D, Wenham RM, Cubitt CL, Neuger AM, Frost TJ et al (2011) Phase I pharmacokinetic and pharmacodynamic study of triciribine phosphate monohydrate, a small-molecule inhibitor of AKT phosphorylation, in adult subjects with solid tumors containing activated AKT. Invest New Drugs 29(6):1381–1389

    CAS  PubMed  Google Scholar 

  121. Tan S, Ng Y, James DE (2011) Next-generation Akt inhibitors provide greater specificity: effects on glucose metabolism in adipocytes. Biochem J 435(2):539–544

    CAS  PubMed  Google Scholar 

  122. Simioni C, Neri LM, Tabellini G, Ricci F, Bressanin D, Chiarini F et al (2012) Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia. Leukemia 22(10):136

    Google Scholar 

  123. Rhodes N, Heerding DA, Duckett DR, Eberwein DJ, Knick VB, Lansing TJ et al (2008) Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res 68(7):2366–2374

    CAS  PubMed  Google Scholar 

  124. Zeng Z, Samudio IJ, Zhang W, Estrov Z, Pelicano H, Harris D et al (2006) Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res 66(7):3737–3746

    CAS  PubMed  Google Scholar 

  125. Rampling R, Sanson M, Gorlia T, Lacombe D, Lai C, Gharib M et al (2012) A phase I study of LY317615 (enzastaurin) and temozolomide in patients with gliomas (EORTC trial 26054). Neuro Oncol 14(3):344–350

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Vansteenkiste J, Ramlau R, von Pawel J, San Antonio B, Eschbach C, Szczesna A (2012) A phase II randomized study of cisplatin-pemetrexed plus either enzastaurin or placebo in chemonaive patients with advanced non-small cell lung cancer. Oncology 82(1):25–29

    CAS  PubMed  Google Scholar 

  127. Wolff RA, Fuchs M, Di Bartolomeo M, Hossain AM, Stoffregen C, Nicol S et al (2011) A double-blind, randomized, placebo-controlled, phase 2 study of maintenance enzastaurin with 5-fluorouracil/leucovorin plus bevacizumab after first-line therapy for metastatic colorectal cancer. Cancer 27(10):26692

    Google Scholar 

  128. Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2(11):1093–1103

    CAS  PubMed  Google Scholar 

  129. Pal SK, Reckamp K, Yu H, Figlin RA (2010) Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs 19(11):1355–1366

    CAS  PubMed  Google Scholar 

  130. Handrick R, Rubel A, Faltin H, Eibl H, Belka C, Jendrossek V (2006) Increased cytotoxicity of ionizing radiation in combination with membrane-targeted apoptosis modulators involves downregulation of protein kinase B/Akt-mediated survival-signaling. Radiother Oncol 80(2):199–206

    CAS  PubMed  Google Scholar 

  131. Martelli AM, Papa V, Tazzari PL, Ricci F, Evangelisti C, Chiarini F et al (2010) Erucylphosphohomocholine, the first intravenously applicable alkylphosphocholine, is cytotoxic to acute myelogenous leukemia cells through JNK- and PP2A-dependent mechanisms. Leukemia 24(4):687–698

    CAS  PubMed  Google Scholar 

  132. Bidyasar S, Kurzrock R, Falchook GS, Naing A, Wheler JJ, Durand J et al (2009) A first-in-human phase I trial of PBI-05204 (oleandrin), an inhibitor of Akt, FGF-2, NF-Kb, and p70S6K in advanced solid tumor patients. ASCO Meeting Abstracts. 27(15S):3537 (2009 June 8)

    Google Scholar 

  133. Dunn DE, He DN, Yang P, Johansen M, Newman RA, Lo DC (2011) In vitro and in vivo neuroprotective activity of the cardiac glycoside oleandrin from Nerium oleander in brain slice-based stroke models. J Neurochem 119(4):805–814

    CAS  PubMed  Google Scholar 

  134. Yoon H, Kim DJ, Ahn EH, Gellert GC, Shay JW, Ahn CH et al (2009) Antitumor activity of a novel antisense oligonucleotide against Akt1. J Cell Biochem 108(4):832–838

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Marshall J, Posey J, Hwang J, Malik S, Shen R, Kazempour K, et al (2007) A phase I trial of RX-0201 (AKT anti-sense) in patients with an advanced cancer. ASCO Meeting Abstracts. 25(18_suppl):3564 (2007 June 21)

    Google Scholar 

  136. Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S et al (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9(4):359–366

    CAS  PubMed  Google Scholar 

  137. Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y et al (2007) Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318(5852):977–980

    CAS  PubMed  Google Scholar 

  138. Fouladi M, Laningham F, Wu J, O’Shaughnessy MA, Molina K, Broniscer A et al (2007) Phase I study of everolimus in pediatric patients with refractory solid tumors. J Clin Oncol 25(30):4806–4812

    CAS  PubMed  Google Scholar 

  139. Owonikoko TK, Khuri FR, Ramalingam SS (2009) Preoperative therapy for early-stage NSCLC: opportunities and challenges. Oncology 23(10):892

    Google Scholar 

  140. Rini BI, Campbell SC, Escudier B (2009) Renal cell carcinoma. Lancet 373(9669):1119–1132

    CAS  PubMed  Google Scholar 

  141. Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10(11):868–880

    CAS  PubMed  Google Scholar 

  142. Chawla SP, Staddon AP, Baker LH, Schuetze SM, Tolcher AW, D’Amato GZ et al (2012) Phase II study of the mammalian target of rapamycin inhibitor ridaforolimus in patients with advanced bone and soft tissue sarcomas. J Clin Oncol 30(1):78–84

    CAS  PubMed  Google Scholar 

  143. Donia M, McCubrey JA, Bendtzen K, Nicoletti F (2010) Potential use of rapamycin in HIV infection. Br J Clin Pharmacol 70(6):784–793

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Nicoletti F, Fagone P, Meroni P, McCubrey J, Bendtzen K (2011) mTOR as a multifunctional therapeutic target in HIV infection. Drug Discov Today 16(15–16):715–721

    CAS  PubMed  Google Scholar 

  145. Bhagwat SV, Gokhale PC, Crew AP, Cooke A, Yao Y, Mantis C et al (2011) Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer Ther 10(8):1394–1406

    CAS  PubMed  Google Scholar 

  146. Grimaldi C, Chiarini F, Tabellini G, Ricci F, Tazzari PL, Battistelli M et al (2012) AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications. Leukemia 26(1):91–100

    CAS  PubMed  Google Scholar 

  147. Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H et al (2010) Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci U S A 107(28):12469–12474

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Tan DS, Dumez H, Olmos D, Sandhu SK, Hoeben A, Stephens AW et al (2010) First-in-human phase I study exploring three schedules of OSI-027, a novel small molecule TORC1/TORC2 inhibitor, in patients with advanced solid tumors and lymphoma. ASCO Meeting Abstracts. 28(15_suppl):3006 (2010 June 14)

    Google Scholar 

  149. Jessen K, Wang S, Kessler L, Guo X, Kucharski J, Staunton J et al Abstract B148: INK128 is a potent and selective TORC1/2 inhibitor with broad oral antitumor activity. Molecular Cancer Therapeutics. 8(Supplement 1):B148

    Google Scholar 

  150. Hsieh AC, Ruggero D (2010) Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin Cancer Res 16(20):4914–4920

    CAS  PubMed  Google Scholar 

  151. Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE et al (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 70(1):288–298

    CAS  PubMed  Google Scholar 

  152. Xue Q, Hopkins B, Perruzzi C, Udayakumar D, Sherris D, Benjamin LE (2008) Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability. Cancer Res 68(22):9551–9557

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Yu K, Shi C, Toral-Barza L, Lucas J, Shor B, Kim JE et al (2010) Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 70(2):621–631

    CAS  PubMed  Google Scholar 

  154. Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM et al (2009) Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 421(1):29–42

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Falcon BL, Barr S, Gokhale PC, Chou J, Fogarty J, Depeille P et al (2011) Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors. Cancer Res 71(5):1573–1583

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Liu Q, Wang J, Kang SA, Thoreen CC, Hur W, Ahmed T et al (2011) Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J Med Chem 54(5):1473–1480

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–1356

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Wang Z, Zhou J, Fan J, Qiu SJ, Yu Y, Huang XW et al (2008) Effect of rapamycin alone and in combination with sorafenib in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res 14(16):5124–5130

    CAS  PubMed  Google Scholar 

  159. Jin N, Jiang T, Rosen DM, Nelkin BD, Ball DW (2011) Synergistic action of a RAF inhibitor and a dual PI3K/mTOR inhibitor in thyroid cancer. Clin Cancer Res 17(20):6482–6489

    CAS  PubMed  Google Scholar 

  160. Legrier ME, Yang CP, Yan HG, Lopez-Barcons L, Keller SM, Perez-Soler R et al (2007) Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res 67(23):11300–11308

    CAS  PubMed  Google Scholar 

  161. Marshall G, Howard Z, Dry J, Fenton S, Heathcote D, Gray N et al (2011) Benefits of mTOR kinase targeting in oncology: pre-clinical evidence with AZD8055. Biochem Soc Trans 39(2):456–459

    CAS  PubMed  Google Scholar 

  162. Shapiro G, LoRusso P, Kwak EL, Cleary JM, Musib L, Jones C et al (2011) Clinical combination of the MEK inhibitor GDC-0973 and the PI3 K inhibitor GDC-0941: A first-in-human phase Ib study testing daily and intermittent dosing schedules in patients with advanced solid tumors. ASCO Meeting Abstracts. 29(15_suppl):3005 (2011 June 9)

    Google Scholar 

  163. Yang H, Higgins B, Kolinsky K, Packman K, Bradley WD, Lee RJ et al (2012) Antitumor activity of BRAF inhibitor vemurafenib in preclinical models of BRAF-mutant colorectal cancer. Cancer Res 72(3):779–789

    CAS  PubMed  Google Scholar 

  164. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K et al (2010) MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9(7):1956–1967

    CAS  PubMed  Google Scholar 

  165. Baumann P, Mandl-Weber S, Oduncu F, Schmidmaier R (2009) The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma. Exp Cell Res 315(3):485–497

    CAS  PubMed  Google Scholar 

  166. Manara MC, Nicoletti G, Zambelli D, Ventura S, Guerzoni C, Landuzzi L et al (2010) NVP-BEZ235 as a new therapeutic option for sarcomas. Clin Cancer Res 16(2):530–540

    CAS  PubMed  Google Scholar 

  167. Zhang YJ, Duan Y, Zheng XF (2011) Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. Drug Discov Today 16(7–8):325–331

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Gravina GL, Marampon F, Petini F, Biordi L, Sherris D, Jannini EA et al (2011) The TORC1/TORC2 inhibitor, Palomid 529, reduces tumor growth and sensitizes to docetaxel and cisplatin in aggressive and hormone-refractory prostate cancer cells. Endocr Relat Cancer 18(4):385–400

    CAS  PubMed  Google Scholar 

  169. Diaz R, Nguewa PA, Diaz-Gonzalez JA, Hamel E, Gonzalez-Moreno O, Catena R et al (2009) The novel Akt inhibitor Palomid 529 (P529) enhances the effect of radiotherapy in prostate cancer. Br J Cancer 100(6):932–940

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Chung EJ, Brown AP, Asano H, Mandler M, Burgan WE, Carter D et al (2009) In vitro and in vivo radiosensitization with AZD6244 (ARRY-142886), an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 kinase. Clin Cancer Res 15(9):3050–3057 (Epub 2009 Apr 14)

    Google Scholar 

  171. Edwards E, Geng L, Tan J, Onishko H, Donnelly E, Hallahan DE (2002) Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation. Cancer Res 62(16):4671–4677

    CAS  PubMed  Google Scholar 

  172. Shinohara ET, Cao C, Niermann K, Mu Y, Zeng F, Hallahan DE et al (2005) Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 24(35):5414–5422

    CAS  PubMed  Google Scholar 

  173. Paglin S, Lee NY, Nakar C, Fitzgerald M, Plotkin J, Deuel B et al (2005) Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Res 65(23):11061–11070

    CAS  PubMed  Google Scholar 

  174. Moretti L, Attia A, Kim KW, Lu B (2007) Crosstalk between Bak/Bax and mTOR signaling regulates radiation-induced autophagy. Autophagy 3(2):142–144

    CAS  PubMed  Google Scholar 

  175. Kudchadkar R, Paraiso KH, Smalley KS (2012) Targeting mutant BRAF in melanoma: current status and future development of combination therapy strategies. Cancer J 18(2):124–131

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

MC and GM were supported in part by grants from the Italian “Ministero dell’Istruzione, dell’Università e della Ricerca (Ministry for Education, Universities and Research)—MIUR” PRIN 2008 and FIRB-MERIT n. RBNE08YYBM. MC was also supported in part by a grant to the CNR from the Italian Ministry of Economy and Finance for the Project FaReBio di Qualità. ML was supported in part by a grant from the Italian Ministry of Health, Ricerca Finalizzata Stemness 2008 entitled “Molecular Determinants of Stemness and Mesenchymal Phenotype in Breast Cancer”. AMM was supported in part by grants from Fondazione del Monte di Bologna e Ravenna, MinSan 2008 “Molecular therapy in pediatric sarcomas and leukemias against IGF-IR system: new drugs, best drug–drug interactions, mechanisms of resistance and indicators of efficacy”, MIUR PRIN 2008 (2008THTNLC), and MIUR FIRB 2010 (RBAP10447J-003) and 2011 (RBAP11ZJFA_001). MM was supported in part from the Italian Association for Cancer Research (AIRC), the Cariplo Foundation, and the Italian Ministry of Health. AT was supported in part by grants from the Italian “Ministero dell’Istruzione, dell’Università e della Ricerca (Ministry for Education, University and Research) —MIUR—PRIN 2008 and grant from “Sapienza”, University of Rome 2009–11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. McCubrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McCubrey, J.A. et al. (2013). New Agents and Approaches for Targeting the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR Cell Survival Pathways. In: Johnson, D. (eds) Cell Death Signaling in Cancer Biology and Treatment. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5847-0_13

Download citation

Publish with us

Policies and ethics