Defective Apoptosis Signaling in Cancer

Part of the Cell Death in Biology and Diseases book series (CELLDEATH)


Apoptosis is critically important during development, facilitating the sculpting and molding of tissues, and in the adult, acting to maintain homeostasis of cell numbers. Apoptosis also plays a key role in immune-mediated elimination of infected or transformed target cells. In addition, apoptosis drives cellular suicide following damage to DNA or other cell components, including damage resulting from treatment with chemotherapy or radiation. In view of the fundamental importance of apoptotic cell death, it is, perhaps, not surprising that defects in apoptosis signaling are involved in a number of human diseases, including the development and progression of human malignancies. Efforts to promote therapeutic elimination of cancer cells via induction of apoptosis will benefit from more complete understanding of normal apoptosis signaling and the defects in apoptosis which frequently occur in human tumors. This chapter will describe the elucidation of the intrinsic and extrinsic apoptosis signaling pathways and focus on the defects in these pathways that have commonly been observed in cancers.


Acute Myeloid Leukemia Chronic Lymphocytic Leukemia Mantle Cell Lymphoma Proapoptotic Protein Death Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by National Institutes of Health grants R01 CA137260 and P50 CA097190. A vast number of researchers have made important contributions to the work described in this review. We apologize to those authors whose work we have not cited.


  1. 1.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257PubMedCentralPubMedGoogle Scholar
  2. 2.
    Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306PubMedGoogle Scholar
  3. 3.
    Savill J, Fadok V, Henson P, Haslett C (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14(3):131–136PubMedGoogle Scholar
  4. 4.
    Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407(6805):784–788PubMedGoogle Scholar
  5. 5.
    Wyllie AH, Morris RG, Smith AL, Dunlop D (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142(1):67–77PubMedGoogle Scholar
  6. 6.
    Fukuhara S, Rowley JD, Variakojis D, Golomb HM (1979) Chromosome abnormalities in poorly differentiated lymphocytic lymphoma. Cancer Res 39(8):3119–3128PubMedGoogle Scholar
  7. 7.
    Yunis JJ, Frizzera G, Oken MM, McKenna J, Theologides A, Arnesen M (1987) Multiple recurrent genomic defects in follicular lymphoma. A possible model for cancer. N Engl J Med 316(2):79–84PubMedGoogle Scholar
  8. 8.
    Cleary ML, Sklar J (1985) Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A 82(21):7439–7443PubMedCentralPubMedGoogle Scholar
  9. 9.
    Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228(4706):1440–1443PubMedGoogle Scholar
  10. 10.
    Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226(4678):1097–1099PubMedGoogle Scholar
  11. 11.
    Cleary ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47(1):19–28PubMedGoogle Scholar
  12. 12.
    Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335(6189):440–442PubMedGoogle Scholar
  13. 13.
    Nunez G, London L, Hockenbery D, Alexander M, McKearn JP, Korsmeyer SJ (1990) Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J Immunol 144(9):3602–3610PubMedGoogle Scholar
  14. 14.
    Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348(6299):334–336PubMedGoogle Scholar
  15. 15.
    Garcia I, Martinou I, Tsujimoto Y, Martinou JC (1992) Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science 258(5080):302–304PubMedGoogle Scholar
  16. 16.
    Allsopp TE, Wyatt S, Paterson HF, Davies AM (1993) The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 73(2):295–307PubMedGoogle Scholar
  17. 17.
    Mah SP, Zhong LT, Liu Y, Roghani A, Edwards RH, Bredesen DE (1993) The protooncogene bcl-2 inhibits apoptosis in PC12 cells. J Neurochem 60(3):1183–1186PubMedGoogle Scholar
  18. 18.
    Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ (1991) bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67(5):879–888PubMedGoogle Scholar
  19. 19.
    Strasser A, Harris AW, Cory S (1991) bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67(5):889–899PubMedGoogle Scholar
  20. 20.
    Alnemri ES, Fernandes TF, Haldar S, Croce CM, Litwack G (1992) Involvement of BCL-2 in glucocorticoid-induced apoptosis of human pre-B-leukemias. Cancer Res 52(2):491–495PubMedGoogle Scholar
  21. 21.
    Walton MI, Whysong D, O’Connor PM, Hockenbery D, Korsmeyer SJ, Kohn KW (1993) Constitutive expression of human Bcl-2 modulates nitrogen mustard and camptothecin induced apoptosis. Cancer Res 53(8):1853–1861PubMedGoogle Scholar
  22. 22.
    Miyashita T, Reed JC (1993) Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81(1):151–157PubMedGoogle Scholar
  23. 23.
    McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP et al (1989) bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57(1):79–88PubMedGoogle Scholar
  24. 24.
    McDonnell TJ, Korsmeyer SJ (1991) Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 349(6306):254–256PubMedGoogle Scholar
  25. 25.
    Hengartner MO, Ellis RE, Horvitz HR (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356(6369):494–499PubMedGoogle Scholar
  26. 26.
    Vaux DL, Weissman IL, Kim SK (1992) Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258(5090):1955–1957PubMedGoogle Scholar
  27. 27.
    Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44(6):817–829PubMedGoogle Scholar
  28. 28.
    Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75(4):641–652PubMedGoogle Scholar
  29. 29.
    Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372):768–774PubMedGoogle Scholar
  30. 30.
    Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA et al (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256(5053):97–100PubMedGoogle Scholar
  31. 31.
    Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75(4):653–660PubMedGoogle Scholar
  32. 32.
    Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376(6535):37–43PubMedGoogle Scholar
  33. 33.
    Datta R, Banach D, Kojima H, Talanian RV, Alnemri ES, Wong WW et al (1996) Activation of the CPP32 protease in apoptosis induced by 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents. Blood 88(6):1936–1943PubMedGoogle Scholar
  34. 34.
    Kondo S, Barna BP, Morimura T, Takeuchi J, Yuan J, Akbasak A et al (1995) Interleukin-1 beta-converting enzyme mediates cisplatin-induced apoptosis in malignant glioma cells. Cancer Res 55(24):6166–6171PubMedGoogle Scholar
  35. 35.
    Zhu H, Fearnhead HO, Cohen GM (1995) An ICE-like protease is a common mediator of apoptosis induced by diverse stimuli in human monocytic THP.1 cells. FEBS Lett 374(2):303–308PubMedGoogle Scholar
  36. 36.
    An B, Dou QP (1996) Cleavage of retinoblastoma protein during apoptosis: an interleukin 1 beta-converting enzyme-like protease as candidate. Cancer Res 56(3):438–442PubMedGoogle Scholar
  37. 37.
    Dou QP, An B, Antoku K, Johnson DE (1997) Fas stimulation induces RB dephosphorylation and proteolysis that is blocked by inhibitors of the ICE protease family. J Cell Biochem 64(4):586–594PubMedGoogle Scholar
  38. 38.
    Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5(11):897–907PubMedGoogle Scholar
  39. 39.
    Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X et al (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273(42):27084–27090PubMedGoogle Scholar
  40. 40.
    Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144(2):281–292PubMedCentralPubMedGoogle Scholar
  41. 41.
    Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86(1):147–157PubMedGoogle Scholar
  42. 42.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489PubMedGoogle Scholar
  43. 43.
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90(3):405–413PubMedGoogle Scholar
  44. 44.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275(5303):1129–1132PubMedGoogle Scholar
  45. 45.
    Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136PubMedGoogle Scholar
  46. 46.
    Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273(5):2926–2930PubMedGoogle Scholar
  47. 47.
    Martin DA, Siegel RM, Zheng L, Lenardo MJ (1998) Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 273(8):4345–4349PubMedGoogle Scholar
  48. 48.
    Yang X, Chang HY, Baltimore D (1998) Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1(2):319–325PubMedGoogle Scholar
  49. 49.
    Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501PubMedGoogle Scholar
  50. 50.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490PubMedGoogle Scholar
  51. 51.
    Mandruzzato S, Brasseur F, Andry G, Boon T, van der Bruggen P (1997) A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 186(5):785–793PubMedCentralPubMedGoogle Scholar
  52. 52.
    Soung YH, Lee JW, Kim SY, Sung YJ, Park WS, Nam SW et al (2005) Caspase-8 gene is frequently inactivated by the frameshift somatic mutation 1225_1226delTG in hepatocellular carcinomas. Oncogene 24(1):141–147PubMedGoogle Scholar
  53. 53.
    Kim HS, Lee JW, Soung YH, Park WS, Kim SY, Lee JH et al (2003) Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 125(3):708–715PubMedGoogle Scholar
  54. 54.
    Soung YH, Lee JW, Kim SY, Jang J, Park YG, Park WS et al (2005) CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res 65(3):815–821PubMedGoogle Scholar
  55. 55.
    Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6(5):529–535PubMedGoogle Scholar
  56. 56.
    Banelli B, Casciano I, Croce M, Di Vinci A, Gelvi I, Pagnan G et al (2002) Expression and methylation of CASP8 in neuroblastoma: identification of a promoter region. Nat Med 8(12):1333–1335, author reply 5Google Scholar
  57. 57.
    Lazcoz P, Munoz J, Nistal M, Pestana A, Encio I, Castresana JS (2006) Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma. BMC Cancer 6:254PubMedCentralPubMedGoogle Scholar
  58. 58.
    Fulda S, Poremba C, Berwanger B, Hacker S, Eilers M, Christiansen H et al (2006) Loss of caspase-8 expression does not correlate with MYCN amplification, aggressive disease, or prognosis in neuroblastoma. Cancer Res 66(20):10016–10023PubMedGoogle Scholar
  59. 59.
    Yang Q, Kiernan CM, Tian Y, Salwen HR, Chlenski A, Brumback BA et al (2007) Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin Cancer Res 13(11):3191–3197PubMedGoogle Scholar
  60. 60.
    Kamimatsuse A, Matsuura K, Moriya S, Fukuba I, Yamaoka H, Fukuda E et al (2009) Detection of CpG island hypermethylation of caspase-8 in neuroblastoma using an oligonucleotide array. Pediatr Blood Cancer 52(7):777–783PubMedGoogle Scholar
  61. 61.
    Harada K, Toyooka S, Shivapurkar N, Maitra A, Reddy JL, Matta H et al (2002) Deregulation of caspase 8 and 10 expression in pediatric tumors and cell lines. Cancer Res 62(20):5897–5901PubMedGoogle Scholar
  62. 62.
    Gonzalez-Gomez P, Bello MJ, Inda MM, Alonso ME, Arjona D, Aminoso C et al (2004) Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma. Oncol Rep 12(3):663–666PubMedGoogle Scholar
  63. 63.
    Pingoud-Meier C, Lang D, Janss AJ, Rorke LB, Phillips PC, Shalaby T et al (2003) Loss of caspase-8 protein expression correlates with unfavorable survival outcome in childhood medulloblastoma. Clin Cancer Res 9(17):6401–6409PubMedGoogle Scholar
  64. 64.
    Bello MJ, De Campos JM, Isla A, Casartelli C, Rey JA (2006) Promoter CpG methylation of multiple genes in pituitary adenomas: frequent involvement of caspase-8. Oncol Rep 15(2):443–448PubMedGoogle Scholar
  65. 65.
    Malekzadeh K, Sobti RC, Nikbakht M, Shekari M, Hosseini SA, Tamandani DK et al (2009) Methylation patterns of Rb1 and Casp-8 promoters and their impact on their expression in bladder cancer. Cancer Invest 27(1):70–80PubMedGoogle Scholar
  66. 66.
    Liedtke C, Zschemisch NH, Cohrs A, Roskams T, Borlak J, Manns MP et al (2005) Silencing of caspase-8 in murine hepatocellular carcinomas is mediated via methylation of an essential promoter element. Gastroenterology 129(5):1602–1615PubMedGoogle Scholar
  67. 67.
    Cho S, Lee JH, Cho SB, Yoon KW, Park SY, Lee WS et al (2010) Epigenetic methylation and expression of caspase 8 and survivin in hepatocellular carcinoma. Pathol Int 60(3):203–211Google Scholar
  68. 68.
    Shivapurkar N, Toyooka S, Eby MT, Huang CX, Sathyanarayana UG, Cunningham HT et al (2002) Differential inactivation of caspase-8 in lung cancers. Cancer Biol Ther 1(1):65–69Google Scholar
  69. 69.
    Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M et al (1999) Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98(1):47–58PubMedGoogle Scholar
  70. 70.
    Tadaki H, Saitsu H, Kanegane H, Miyake N, Imagawa T, Kikuchi M et al (2011) Exonic deletion of CASP10 in a patient presenting with systemic juvenile idiopathic arthritis, but not with autoimmune lymphoproliferative syndrome type IIa. Int J Immunogenet 38(4):287–293Google Scholar
  71. 71.
    Park WS, Lee JH, Shin MS, Park JY, Kim HS, Kim YS et al (2002) Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 21(18):2919–2925PubMedGoogle Scholar
  72. 72.
    Oh JE, Kim MS, Ahn CH, Kim SS, Han JY, Lee SH et al (2010) Mutational analysis of CASP10 gene in colon, breast, lung and hepatocellular carcinomas. Pathology 42(1):73–76Google Scholar
  73. 73.
    Shin MS, Kim HS, Kang CS, Park WS, Kim SY, Lee SN et al (2002) Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99(11):4094–4099PubMedGoogle Scholar
  74. 74.
    Kim MS, Oh JE, Min CK, Lee S, Chung NG, Yoo NJ et al (2009) Mutational analysis of CASP10 gene in acute leukaemias and multiple myelomas. Pathology 41(5):484–487PubMedGoogle Scholar
  75. 75.
    Soung YH, Lee JW, Kim SY, Park WS, Nam SW, Lee JY et al (2006) Mutational analysis of proapoptotic caspase-9 gene in common human carcinomas. APMIS 114(4):292–297PubMedGoogle Scholar
  76. 76.
    Soung YH, Lee JW, Kim SY, Park WS, Nam SW, Lee JY et al (2004) Somatic mutations of CASP3 gene in human cancers. Hum Genet 115(2):112–115PubMedGoogle Scholar
  77. 77.
    Soung YH, Lee JW, Kim HS, Park WS, Kim SY, Lee JH et al (2003) Inactivating mutations of CASPASE-7 gene in human cancers. Oncogene 22(39):8048–8052PubMedGoogle Scholar
  78. 78.
    Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 10(8):561–574Google Scholar
  79. 79.
    Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11(2):109–124Google Scholar
  80. 80.
    Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7(10):988–994PubMedCentralPubMedGoogle Scholar
  81. 81.
    Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M, Salvesen GS (2005) XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24(3):645–655PubMedCentralPubMedGoogle Scholar
  82. 82.
    Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW et al (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104(5):791–800PubMedGoogle Scholar
  83. 83.
    Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104(5):781–790PubMedGoogle Scholar
  84. 84.
    Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES et al (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104(5):769–780PubMedGoogle Scholar
  85. 85.
    Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J et al (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410(6824):112–116PubMedGoogle Scholar
  86. 86.
    Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM et al (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11(2):519–527PubMedGoogle Scholar
  87. 87.
    Huang H, Joazeiro CA, Bonfoco E, Kamada S, Leverson JD, Hunter T (2000) The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 275(35):26661–26664PubMedGoogle Scholar
  88. 88.
    Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci U S A 98(15):8662–8667PubMedCentralPubMedGoogle Scholar
  89. 89.
    Schile AJ, Garcia-Fernandez M, Steller H (2008) Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes Dev 22(16):2256–2266PubMedCentralPubMedGoogle Scholar
  90. 90.
    Choi YE, Butterworth M, Malladi S, Duckett CS, Cohen GM, Bratton SB (2009) The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and -7 via unique mechanisms at distinct steps in their processing. J Biol Chem 284(19):12772–12782PubMedCentralPubMedGoogle Scholar
  91. 91.
    Shiraki K, Sugimoto K, Yamanaka Y, Yamaguchi Y, Saitou Y, Ito K et al (2003) Overexpression of X-linked inhibitor of apoptosis in human hepatocellular carcinoma. Int J Mol Med 12(5):705–708PubMedGoogle Scholar
  92. 92.
    Shi YH, Ding WX, Zhou J, He JY, Xu Y, Gambotto AA et al (2008) Expression of X-linked inhibitor-of-apoptosis protein in hepatocellular carcinoma promotes metastasis and tumor recurrence. Hepatology 48(2):497–507PubMedCentralPubMedGoogle Scholar
  93. 93.
    Augello C, Caruso L, Maggioni M, Donadon M, Montorsi M, Santambrogio R et al (2009) Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer 9:125PubMedCentralPubMedGoogle Scholar
  94. 94.
    Yang XH, Feng ZE, Yan M, Hanada S, Zuo H, Yang CZ et al (2012) XIAP is a predictor of cisplatin-based chemotherapy response and prognosis for patients with advanced head and neck cancer. PLoS One 7(3):e31601Google Scholar
  95. 95.
    Lopes RB, Gangeswaran R, McNeish IA, Wang Y, Lemoine NR (2007) Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer 120(11):2344–2352PubMedGoogle Scholar
  96. 96.
    Xiang G, Wen X, Wang H, Chen K, Liu H (2009) Expression of X-linked inhibitor of apoptosis protein in human colorectal cancer and its correlation with prognosis. J Surg Oncol 100(8):708–712PubMedGoogle Scholar
  97. 97.
    Ramp U, Krieg T, Caliskan E, Mahotka C, Ebert T, Willers R et al (2004) XIAP expression is an independent prognostic marker in clear-cell renal carcinomas. Hum Pathol 35(8):1022–1028PubMedGoogle Scholar
  98. 98.
    Yan Y, Mahotka C, Heikaus S, Shibata T, Wethkamp N, Liebmann J et al (2004) Disturbed balance of expression between XIAP and Smac/DIABLO during tumour progression in renal cell carcinomas. Br J Cancer 91(7):1349–1357PubMedCentralPubMedGoogle Scholar
  99. 99.
    Mizutani Y, Nakanishi H, Li YN, Matsubara H, Yamamoto K, Sato N et al (2007) Overexpression of XIAP expression in renal cell carcinoma predicts a worse prognosis. Int J Oncol 30(4):919–925PubMedGoogle Scholar
  100. 100.
    Ferreira CG, van der Valk P, Span SW, Ludwig I, Smit EF, Kruyt FA et al (2001) Expression of X-linked inhibitor of apoptosis as a novel prognostic marker in radically resected non-small cell lung cancer patients. Clin Cancer Res 7(8):2468–2474PubMedGoogle Scholar
  101. 101.
    Ferreira CG, van der Valk P, Span SW, Jonker JM, Postmus PE, Kruyt FA et al (2001) Assessment of IAP (inhibitor of apoptosis) proteins as predictors of response to chemotherapy in advanced non-small-cell lung cancer patients. Ann Oncol 12(6):799–805PubMedGoogle Scholar
  102. 102.
    Krepela E, Dankova P, Moravcikova E, Krepelova A, Prochazka J, Cermak J et al (2009) Increased expression of inhibitor of apoptosis proteins, survivin and XIAP, in non-small cell lung carcinoma. Int J Oncol 35(6):1449–1462PubMedGoogle Scholar
  103. 103.
    Kempkensteffen C, Jager T, Bub J, Weikert S, Hinz S, Christoph F et al (2007) The equilibrium of XIAP and Smac/DIABLO expression is gradually deranged during the development and progression of testicular germ cell tumours. Int J Androl 30(5):476–483PubMedGoogle Scholar
  104. 104.
    Gu LQ, Li FY, Zhao L, Liu Y, Zang XX, Wang TX et al (2009) BRAFV600E mutation and X-linked inhibitor of apoptosis expression in papillary thyroid carcinoma. Thyroid 19(4):347–354PubMedGoogle Scholar
  105. 105.
    Hussain AR, Uddin S, Ahmed M, Bu R, Ahmed SO, Abubaker J et al (2010) Prognostic significance of XIAP expression in DLBCL and effect of its inhibition on AKT signalling. J Pathol 222(2):180–190Google Scholar
  106. 106.
    Yamamoto K, Abe S, Nakagawa Y, Suzuki K, Hasegawa M, Inoue M et al (2004) Expression of IAP family proteins in myelodysplastic syndromes transforming to overt leukemia. Leuk Res 28(11):1203–1211PubMedGoogle Scholar
  107. 107.
    Tamm I, Richter S, Scholz F, Schmelz K, Oltersdorf D, Karawajew L et al (2004) XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol J 5(6):489–495PubMedGoogle Scholar
  108. 108.
    Chen GH, Lin FR, Ren JH, Chen J, Zhang JN, Wang Y et al (2006) Expression and significance of X-linked inhibitor of apoptosis protein and its antagonized proteins in acute leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 14(4):639–643PubMedGoogle Scholar
  109. 109.
    Ibrahim AM, Mansour IM, Wilson MM, Mokhtar DA, Helal AM, Al Wakeel HM (2012) Study of survivin and X-linked inhibitor of apoptosis protein (XIAP) genes in acute myeloid leukemia (AML). Lab Hematol 18(1):1–10Google Scholar
  110. 110.
    Tamm I, Richter S, Oltersdorf D, Creutzig U, Harbott J, Scholz F et al (2004) High expression levels of x-linked inhibitor of apoptosis protein and survivin correlate with poor overall survival in childhood de novo acute myeloid leukemia. Clin Cancer Res 10(11):3737–3744PubMedGoogle Scholar
  111. 111.
    Sung KW, Choi J, Hwang YK, Lee SJ, Kim HJ, Kim JY et al (2009) Overexpression of X-linked inhibitor of apoptosis protein (XIAP) is an independent unfavorable prognostic factor in childhood de novo acute myeloid leukemia. J Korean Med Sci 24(4):605–613PubMedCentralPubMedGoogle Scholar
  112. 112.
    Hundsdoerfer P, Dietrich I, Schmelz K, Eckert C, Henze G () XIAP expression is post-transcriptionally upregulated in childhood ALL and is associated with glucocorticoid response in T-cell ALL. Pediatr Blood Cancer 55(2):260–266Google Scholar
  113. 113.
    LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG (2008) IAP-targeted therapies for cancer. Oncogene 27(48):6252–6275PubMedGoogle Scholar
  114. 114.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219PubMedGoogle Scholar
  115. 115.
    Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22(53):8590–8607PubMedGoogle Scholar
  116. 116.
    Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in cancer progression and therapy. Integr Biol (Camb) 3(4):279–296Google Scholar
  117. 117.
    Kelly GL, Strasser A (2011) The essential role of evasion from cell death in cancer. Adv Cancer Res 111:39–96Google Scholar
  118. 118.
    Tsujimoto Y, Croce CM (1986) Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci U S A 83(14):5214–5218PubMedCentralPubMedGoogle Scholar
  119. 119.
    Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA et al (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74(4):597–608PubMedGoogle Scholar
  120. 120.
    Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A 90(8):3516–3520PubMedCentralPubMedGoogle Scholar
  121. 121.
    Lin EY, Orlofsky A, Berger MS, Prystowsky MB (1993) Characterization of A1, a novel hemopoietic-specific early-response gene with sequence similarity to bcl-2. J Immunol 151(4):1979–1988PubMedGoogle Scholar
  122. 122.
    Choi SS, Park IC, Yun JW, Sung YC, Hong SI, Shin HS (1995) A novel Bcl-2 related gene, Bfl-1, is overexpressed in stomach cancer and preferentially expressed in bone marrow. Oncogene 11(9):1693–1698PubMedGoogle Scholar
  123. 123.
    Gibson L, Holmgreen SP, Huang DC, Bernard O, Copeland NG, Jenkins NA et al (1996) bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene 13(4):665–675PubMedGoogle Scholar
  124. 124.
    Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730PubMedCentralPubMedGoogle Scholar
  125. 125.
    Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15(12):1481–1486PubMedCentralPubMedGoogle Scholar
  126. 126.
    Shangary S, Johnson DE (2003) Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bcl-2 protein family. Leukemia 17(8):1470–1481PubMedGoogle Scholar
  127. 127.
    Reed JC (2008) Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood 111(7):3322–3330PubMedCentralPubMedGoogle Scholar
  128. 128.
    Kelly PN, Strasser A () The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 18(9):1414–1424Google Scholar
  129. 129.
    Crisan D (1996) BCL-2 gene rearrangements in lymphoid malignancies. Clin Lab Med 16(1):23–47PubMedGoogle Scholar
  130. 130.
    Hill ME, MacLennan KA, Cunningham DC, Vaughan Hudson B, Burke M, Clarke P et al (1996) Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin’s lymphoma: a British national lymphoma investigation study. Blood 88(3):1046–1051PubMedGoogle Scholar
  131. 131.
    Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C et al (1993) High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81(11):3091–3096PubMedGoogle Scholar
  132. 132.
    Maung ZT, MacLean FR, Reid MM, Pearson AD, Proctor SJ, Hamilton PJ et al (1994) The relationship between bcl-2 expression and response to chemotherapy in acute leukaemia. Br J Haematol 88(1):105–109PubMedGoogle Scholar
  133. 133.
    Porwit-MacDonald A, Ivory K, Wilkinson S, Wheatley K, Wong L, Janossy G (1995) Bcl-2 protein expression in normal human bone marrow precursors and in acute myelogenous leukemia. Leukemia 9(7):1191–1198PubMedGoogle Scholar
  134. 134.
    Karakas T, Maurer U, Weidmann E, Miething CC, Hoelzer D, Bergmann L (1998) High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann Oncol 9(2):159–165PubMedGoogle Scholar
  135. 135.
    Bincoletto C, Saad ST, da Silva ES, Queiroz ML (1999) Haematopoietic response and bcl-2 expression in patients with acute myeloid leukaemia. Eur J Haematol 62(1):38–42PubMedGoogle Scholar
  136. 136.
    Campana D, Coustan-Smith E, Manabe A, Buschle M, Raimondi SC, Behm FG et al (1993) Prolonged survival of B-lineage acute lymphoblastic leukemia cells is accompanied by overexpression of bcl-2 protein. Blood 81(4):1025–1031PubMedGoogle Scholar
  137. 137.
    Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC (1993) bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82(6):1820–1828PubMedGoogle Scholar
  138. 138.
    Robertson LE, Plunkett W, McConnell K, Keating MJ, McDonnell TJ (1996) Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia 10(3):456–459PubMedGoogle Scholar
  139. 139.
    Ten Berge RL, Meijer CJ, Dukers DF, Kummer JA, Bladergroen BA, Vos W et al (2002) Expression levels of apoptosis-related proteins predict clinical outcome in anaplastic large cell lymphoma. Blood 99(12):4540–4546PubMedGoogle Scholar
  140. 140.
    Harada N, Hata H, Yoshida M, Soniki T, Nagasaki A, Kuribayashi N et al (1998) Expression of Bcl-2 family of proteins in fresh myeloma cells. Leukemia 12(11):1817–1820PubMedGoogle Scholar
  141. 141.
    Grover R, Wilson GD (1996) Bcl-2 expression in malignant melanoma and its prognostic significance. Eur J Surg Oncol 22(4):347–349PubMedGoogle Scholar
  142. 142.
    Selzer E, Schlagbauer-Wadl H, Okamoto I, Pehamberger H, Potter R, Jansen B (1998) Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines. Melanoma Res 8(3):197–203PubMedGoogle Scholar
  143. 143.
    Vlaykova T, Talve L, Hahka-Kemppinen M, Hernberg M, Muhonen T, Collan Y et al (2002) Immunohistochemically detectable bcl-2 expression in metastatic melanoma: association with survival and treatment response. Oncology 62(3):259–268PubMedGoogle Scholar
  144. 144.
    Deininger MH, Weller M, Streffer J, Meyermann R (1999) Antiapoptotic Bcl-2 family protein expression increases with progression of oligodendroglioma. Cancer 86(9):1832–1839PubMedGoogle Scholar
  145. 145.
    Jiang SX, Sato Y, Kuwao S, Kameya T (1995) Expression of bcl-2 oncogene protein is prevalent in small cell lung carcinomas. J Pathol 177(2):135–138PubMedGoogle Scholar
  146. 146.
    Gazzaniga P, Gradilone A, Vercillo R, Gandini O, Silvestri I, Napolitano M et al (1996) Bcl-2/bax mRNA expression ratio as prognostic factor in low-grade urinary bladder cancer. Int J Cancer 69(2):100–104PubMedGoogle Scholar
  147. 147.
    Pollack A, Wu CS, Czerniak B, Zagars GK, Benedict WF, McDonnell TJ (1997) Abnormal bcl-2 and pRb expression are independent correlates of radiation response in muscle-invasive bladder cancer. Clin Cancer Res 3(10):1823–1829PubMedGoogle Scholar
  148. 148.
    Kong G, Shin KY, Oh YH, Lee JJ, Park HY, Woo YN et al (1998) Bcl-2 and p53 expressions in invasive bladder cancers. Acta Oncol 37(7–8):715–720PubMedGoogle Scholar
  149. 149.
    Ye D, Li H, Qian S, Sun Y, Zheng J, Ma Y (1998) bcl-2/bax expression and p53 gene status in human bladder cancer: relationship to early recurrence with intravesical chemotherapy after resection. J Urol 160(6 Pt 1):2025–2028, discussion 9Google Scholar
  150. 150.
    Sinicrope FA, Hart J, Michelassi F, Lee JJ (1995) Prognostic value of bcl-2 oncoprotein expression in stage II colon carcinoma. Clin Cancer Res 1(10):1103–1110PubMedGoogle Scholar
  151. 151.
    McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT et al (1992) Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52(24):6940–6944PubMedGoogle Scholar
  152. 152.
    Colombel M, Symmans F, Gil S, O’Toole KM, Chopin D, Benson M et al (1993) Detection of the apoptosis-suppressing oncoprotein bc1-2 in hormone-refractory human prostate cancers. Am J Pathol 143(2):390–400PubMedCentralPubMedGoogle Scholar
  153. 153.
    Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, Moul JW (1996) Elevated levels of apoptosis regulator proteins p53 and bcl-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer. J Urol 156(4):1511–1516PubMedGoogle Scholar
  154. 154.
    Pallis M, Zhu YM, Russell NH (1997) Bcl-x(L) is heterogenously expressed by acute myeloblastic leukaemia cells and is associated with autonomous growth in vitro and with P-glycoprotein expression. Leukemia 11(7):945–949PubMedGoogle Scholar
  155. 155.
    Deng G, Lane C, Kornblau S, Goodacre A, Snell V, Andreeff M et al (1998) Ratio of bcl-xshort to bcl-xlong is different in good- and poor-prognosis subsets of acute myeloid leukemia. Mol Med 4(3):158–164PubMedCentralPubMedGoogle Scholar
  156. 156.
    Tu Y, Renner S, Xu F, Fleishman A, Taylor J, Weisz J et al (1998) BCL-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res 58(2):256–262PubMedGoogle Scholar
  157. 157.
    Tang L, Tron VA, Reed JC, Mah KJ, Krajewska M, Li G et al (1998) Expression of apoptosis regulators in cutaneous malignant melanoma. Clin Cancer Res 4(8):1865–1871PubMedGoogle Scholar
  158. 158.
    Leiter U, Schmid RM, Kaskel P, Peter RU, Krahn G (2000) Antiapoptotic bcl-2 and bcl-xL in advanced malignant melanoma. Arch Dermatol Res 292(5):225–232PubMedGoogle Scholar
  159. 159.
    Aebersold DM, Kollar A, Beer KT, Laissue J, Greiner RH, Djonov V (2001) Involvement of the hepatocyte growth factor/scatter factor receptor c-met and of Bcl-xL in the resistance of oropharyngeal cancer to ionizing radiation. Int J Cancer 96(1):41–54PubMedGoogle Scholar
  160. 160.
    Trask DK, Wolf GT, Bradford CR, Fisher SG, Devaney K, Johnson M et al (2002) Expression of Bcl-2 family proteins in advanced laryngeal squamous cell carcinoma: correlation with response to chemotherapy and organ preservation. Laryngoscope 112(4):638–644PubMedGoogle Scholar
  161. 161.
    Watanabe J, Kushihata F, Honda K, Mominoki K, Matsuda S, Kobayashi N (2002) Bcl-xL overexpression in human hepatocellular carcinoma. Int J Oncol 21(3):515–519PubMedGoogle Scholar
  162. 162.
    Olopade OI, Adeyanju MO, Safa AR, Hagos F, Mick R, Thompson CB et al (1997) Overexpression of BCL-x protein in primary breast cancer is associated with high tumor grade and nodal metastases. Cancer J Sci Am 3(4):230–237PubMedGoogle Scholar
  163. 163.
    Kirsh EJ, Baunoch DA, Stadler WM (1998) Expression of bcl-2 and bcl-X in bladder cancer. J Urol 159(4):1348–1353PubMedGoogle Scholar
  164. 164.
    Krajewska M, Moss SF, Krajewski S, Song K, Holt PR, Reed JC (1996) Elevated expression of Bcl-X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res 56(10):2422–2427PubMedGoogle Scholar
  165. 165.
    Friess H, Lu Z, Andren-Sandberg A, Berberat P, Zimmermann A, Adler G et al (1998) Moderate activation of the apoptosis inhibitor bcl-xL worsens the prognosis in pancreatic cancer. Ann Surg 228(6):780–787PubMedCentralPubMedGoogle Scholar
  166. 166.
    Miyamoto Y, Hosotani R, Wada M, Lee JU, Koshiba T, Fujimoto K et al (1999) Immunohistochemical analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 expression in pancreatic cancers. Oncology 56(1):73–82PubMedGoogle Scholar
  167. 167.
    Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD et al (1998) Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood 91(3):991–1000PubMedGoogle Scholar
  168. 168.
    Zhang B, Gojo I, Fenton RG (2002) Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood 99(6):1885–1893PubMedGoogle Scholar
  169. 169.
    Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K et al (2004) VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 104(9):2886–2892PubMedGoogle Scholar
  170. 170.
    Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al (1998) Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood 91(9):3379–3389PubMedGoogle Scholar
  171. 171.
    Shigemasa K, Katoh O, Shiroyama Y, Mihara S, Mukai K, Nagai N et al (2002) Increased MCL-1 expression is associated with poor prognosis in ovarian carcinomas. Jpn J Cancer Res 93(5):542–550PubMedGoogle Scholar
  172. 172.
    Li C, Li R, Grandis JR, Johnson DE (2008) Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells. Mol Cancer Ther 7(6):1647–1655PubMedCentralPubMedGoogle Scholar
  173. 173.
    Feuerhake F, Kutok JL, Monti S, Chen W, LaCasce AS, Cattoretti G et al (2005) NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood 106(4):1392–1399PubMedGoogle Scholar
  174. 174.
    Brien G, Trescol-Biemont MC, Bonnefoy-Berard N (2007) Downregulation of Bfl-1 protein expression sensitizes malignant B cells to apoptosis. Oncogene 26(39):5828–5832PubMedGoogle Scholar
  175. 175.
    Wilson JW, Nostro MC, Balzi M, Faraoni P, Cianchi F, Becciolini A et al (2000) Bcl-w expression in colorectal adenocarcinoma. Br J Cancer 82(1):178–185PubMedCentralPubMedGoogle Scholar
  176. 176.
    Monni O, Joensuu H, Franssila K, Klefstrom J, Alitalo K, Knuutila S (1997) BCL2 overexpression associated with chromosomal amplification in diffuse large B-cell lymphoma. Blood 90(3):1168–1174PubMedGoogle Scholar
  177. 177.
    Olejniczak ET, Van Sant C, Anderson MG, Wang G, Tahir SK, Sauter G et al (2007) Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains. Mol Cancer Res 5(4):331–339PubMedGoogle Scholar
  178. 178.
    Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905Google Scholar
  179. 179.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949PubMedCentralPubMedGoogle Scholar
  180. 180.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529PubMedCentralPubMedGoogle Scholar
  181. 181.
    Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801PubMedGoogle Scholar
  182. 182.
    Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171PubMedCentralPubMedGoogle Scholar
  183. 183.
    Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17(2):215–220Google Scholar
  184. 184.
    Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619PubMedGoogle Scholar
  185. 185.
    Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2(9):647–656PubMedGoogle Scholar
  186. 186.
    Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN (1993) Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 4(6):327–332PubMedGoogle Scholar
  187. 187.
    Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B et al (2005) Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 24(12):2096–2103PubMedCentralPubMedGoogle Scholar
  188. 188.
    Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7(12):1166–1173PubMedGoogle Scholar
  189. 189.
    Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M et al (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14(16):2060–2071PubMedCentralPubMedGoogle Scholar
  190. 190.
    Sharpe JC, Arnoult D, Youle RJ (2004) Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644(2–3):107–113PubMedGoogle Scholar
  191. 191.
    Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111(3):331–342PubMedGoogle Scholar
  192. 192.
    Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3):183–192PubMedGoogle Scholar
  193. 193.
    Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17(4):525–535PubMedGoogle Scholar
  194. 194.
    Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA et al (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9(5):351–365PubMedGoogle Scholar
  195. 195.
    Cartron PF, Gallenne T, Bougras G, Gautier F, Manero F, Vusio P et al (2004) The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell 16(5):807–818PubMedGoogle Scholar
  196. 196.
    Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17(3):393–403PubMedGoogle Scholar
  197. 197.
    Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19(11):1294–1305PubMedCentralPubMedGoogle Scholar
  198. 198.
    Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315(5813):856–859PubMedGoogle Scholar
  199. 199.
    Fernandez-Luna JL (2008) Regulation of pro-apoptotic BH3-only proteins and its contribution to cancer progression and chemoresistance. Cell Signal 20(11):1921–1926PubMedGoogle Scholar
  200. 200.
    Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275(5302):967–969PubMedGoogle Scholar
  201. 201.
    Meijerink JP, Mensink EJ, Wang K, Sedlak TW, Sloetjes AW, de Witte T et al (1998) Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91(8):2991–2997PubMedGoogle Scholar
  202. 202.
    Miquel C, Borrini F, Grandjouan S, Auperin A, Viguier J, Velasco V et al (2005) Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. Am J Clin Pathol 123(4):562–570PubMedGoogle Scholar
  203. 203.
    Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V et al (2007) Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 109(1):271–280PubMedGoogle Scholar
  204. 204.
    Kondo S, Shinomura Y, Miyazaki Y, Kiyohara T, Tsutsui S, Kitamura S et al (2000) Mutations of the bak gene in human gastric and colorectal cancers. Cancer Res 60(16):4328–4330PubMedGoogle Scholar
  205. 205.
    Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A et al (2005) Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 24(8):1348–1358PubMedGoogle Scholar
  206. 206.
    Sturm I, Stephan C, Gillissen B, Siebert R, Janz M, Radetzki S et al (2006) Loss of the tissue-specific proapoptotic BH3-only protein Nbk/Bik is a unifying feature of renal cell carcinoma. Cell Death Differ 13(4):619–627PubMedGoogle Scholar
  207. 207.
    Richter-Larrea JA, Robles EF, Fresquet V, Beltran E, Rullan AJ, Agirre X et al (2010) Reversion of epigenetically mediated BIM silencing overcomes chemoresistance in Burkitt lymphoma. Blood 116(14):2531–2542Google Scholar
  208. 208.
    Garrison SP, Jeffers JR, Yang C, Nilsson JA, Hall MA, Rehg JE et al (2008) Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis. Mol Cell Biol 28(17):5391–5402PubMedCentralPubMedGoogle Scholar
  209. 209.
    Obata T, Toyota M, Satoh A, Sasaki Y, Ogi K, Akino K et al (2003) Identification of HRK as a target of epigenetic inactivation in colorectal and gastric cancer. Clin Cancer Res 9(17):6410–6418PubMedGoogle Scholar
  210. 210.
    Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3(5):e2236PubMedCentralPubMedGoogle Scholar
  211. 211.
    Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K (2009) MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113(2):396–402PubMedGoogle Scholar
  212. 212.
    Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y et al (2009) The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 136(5):1689–1700PubMedCentralPubMedGoogle Scholar
  213. 213.
    Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG et al (2009) Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci 100(7):1234–1242PubMedGoogle Scholar
  214. 214.
    Lane DP (1992) Cancer p53, guardian of the genome. Nature 358(6381):15–16PubMedGoogle Scholar
  215. 215.
    Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91(3):325–334PubMedGoogle Scholar
  216. 216.
    Mayo LD, Turchi JJ, Berberich SJ (1997) Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res 57(22):5013–5016PubMedGoogle Scholar
  217. 217.
    Lakin ND, Hann BC, Jackson SP (1999) The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18(27):3989–3995PubMedGoogle Scholar
  218. 218.
    Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY et al (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13(2):152–157PubMedCentralPubMedGoogle Scholar
  219. 219.
    Chen L, Gilkes DM, Pan Y, Lane WS, Chen J (2005) ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J 24(19):3411–3422PubMedCentralPubMedGoogle Scholar
  220. 220.
    Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O et al (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15(9):1067–1077PubMedCentralPubMedGoogle Scholar
  221. 221.
    Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85PubMedGoogle Scholar
  222. 222.
    Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80(2):293–299PubMedGoogle Scholar
  223. 223.
    Moroni MC, Hickman ES, Lazzerini Denchi E, Caprara G, Colli E, Cecconi F (2001) Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3(6):552–558PubMedGoogle Scholar
  224. 224.
    Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7(3):673–682PubMedGoogle Scholar
  225. 225.
    Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7(3):683–694PubMedGoogle Scholar
  226. 226.
    Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288(5468):1053–1058PubMedGoogle Scholar
  227. 227.
    Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4(11):842–849PubMedGoogle Scholar
  228. 228.
    Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4(4):321–328PubMedGoogle Scholar
  229. 229.
    Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302(5647):1036–1038PubMedGoogle Scholar
  230. 230.
    Michalak EM, Villunger A, Adams JM, Strasser A (2008) In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ 15(6):1019–1029PubMedCentralPubMedGoogle Scholar
  231. 231.
    Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A et al (2003) Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 17(18):2233–2238PubMedCentralPubMedGoogle Scholar
  232. 232.
    Chipuk JE, Maurer U, Green DR, Schuler M (2003) Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4(5):371–381PubMedGoogle Scholar
  233. 233.
    Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014PubMedGoogle Scholar
  234. 234.
    Leu JI, Dumont P, Hafey M, Murphy ME, George DL (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6(5):443–450PubMedGoogle Scholar
  235. 235.
    Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590PubMedGoogle Scholar
  236. 236.
    Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B et al (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400(6747):886–891PubMedGoogle Scholar
  237. 237.
    Friesen C, Fulda S, Debatin KM (1997) Deficient activation of the CD95 (APO-1/Fas) system in drug-resistant cells. Leukemia 11(11):1833–1841PubMedGoogle Scholar
  238. 238.
    Antoku K, Liu Z, Johnson DE (1997) Inhibition of caspase proteases by CrmA enhances the resistance of human leukemic cells to multiple chemotherapeutic agents. Leukemia 11(10):1665–1672PubMedGoogle Scholar
  239. 239.
    Fulda S, Los M, Friesen C, Debatin KM (1998) Chemosensitivity of solid tumor cells in vitro is related to activation of the CD95 system. Int J Cancer 76(1):105–114PubMedGoogle Scholar
  240. 240.
    Fulda S, Meyer E, Friesen C, Susin SA, Kroemer G, Debatin KM (2001) Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene 20(9):1063–1075PubMedGoogle Scholar
  241. 241.
    Tauzin S, Debure L, Moreau JF, Legembre P (2010) CD95-mediated cell signaling in cancer: mutations and post-translational modulations. Cell Mol Life Sci 69(8):1261–1277Google Scholar
  242. 242.
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356(6367):314–317PubMedGoogle Scholar
  243. 243.
    Chu JL, Drappa J, Parnassa A, Elkon KB (1993) The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon, ETn. J Exp Med 178(2):723–730PubMedGoogle Scholar
  244. 244.
    Wu J, Zhou T, He J, Mountz JD (1993) Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J Exp Med 178(2):461–468PubMedGoogle Scholar
  245. 245.
    Adachi M, Watanabe-Fukunaga R, Nagata S (1993) Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci U S A 90(5):1756–1760PubMedCentralPubMedGoogle Scholar
  246. 246.
    Dowdell KC, Niemela JE, Price S, Davis J, Hornung RL, Oliveira JB et al (2010) Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood 115(25):5164–5169Google Scholar
  247. 247.
    Hsu AP, Dowdell KC, Davis J, Niemela JE, Anderson SM, Shaw PA et al (2012) Autoimmune lymphoproliferative syndrome due to FAS mutations outside the signal-transducing death domain: molecular mechanisms and clinical penetrance. Genet Med 14(1):81–89Google Scholar
  248. 248.
    Kuehn HS, Caminha I, Niemela JE, Rao VK, Davis J, Fleisher TA et al (2011) FAS haploinsufficiency is a common disease mechanism in the human autoimmune lymphoproliferative syndrome. J Immunol 186(10):6035–6043Google Scholar
  249. 249.
    Magerus-Chatinet A, Neven B, Stolzenberg MC, Daussy C, Arkwright PD, Lanzarotti N et al (2011) Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a consequence of genetic defect accumulation. J Clin Invest 121(1):106–112Google Scholar
  250. 250.
    Wu J, Siddiqui J, Nihal M, Vonderheid EC, Wood GS (2011) Structural alterations of the FAS gene in cutaneous T-cell lymphoma (CTCL). Arch Biochem Biophys 508(2):185–191Google Scholar
  251. 251.
    Dereure O, Levi E, Vonderheid EC, Kadin ME (2002) Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin. J Invest Dermatol 118(6):949–956PubMedGoogle Scholar
  252. 252.
    Seeberger H, Starostik P, Schwarz S, Knorr C, Kalla J, Ott G et al (2001) Loss of Fas (CD95/APO-1) regulatory function is an important step in early MALT-type lymphoma development. Lab Invest 81(7):977–986PubMedGoogle Scholar
  253. 253.
    Wohlfart S, Sebinger D, Gruber P, Buch J, Polgar D, Krupitza G et al (2004) FAS (CD95) mutations are rare in gastric MALT lymphoma but occur more frequently in primary gastric diffuse large B-cell lymphoma. Am J Pathol 164(3):1081–1089PubMedCentralPubMedGoogle Scholar
  254. 254.
    Takakuwa T, Dong Z, Nakatsuka S, Kojya S, Harabuchi Y, Yang WI et al (2002) Frequent mutations of Fas gene in nasal NK/T cell lymphoma. Oncogene 21(30):4702–4705PubMedGoogle Scholar
  255. 255.
    Gronbaek K, Straten PT, Ralfkiaer E, Ahrenkiel V, Andersen MK, Hansen NE et al (1998) Somatic Fas mutations in non-Hodgkin’s lymphoma: association with extranodal disease and autoimmunity. Blood 92(9):3018–3024PubMedGoogle Scholar
  256. 256.
    Scholl V, Stefanoff CG, Hassan R, Spector N, Renault IZ (2007) Mutations within the 5 region of FAS/CD95 gene in nodal diffuse large B-cell lymphoma. Leuk Lymphoma 48(5):957–963PubMedGoogle Scholar
  257. 257.
    Takakuwa T, Dong Z, Takayama H, Matsuzuka F, Nagata S, Aozasa K (2001) Frequent mutations of Fas gene in thyroid lymphoma. Cancer Res 61(4):1382–1385PubMedGoogle Scholar
  258. 258.
    Landowski TH, Qu N, Buyuksal I, Painter JS, Dalton WS (1997) Mutations in the Fas antigen in patients with multiple myeloma. Blood 90(11):4266–4270PubMedGoogle Scholar
  259. 259.
    Lee SH, Shin MS, Park WS, Kim SY, Dong SM, Pi JH et al (1999) Alterations of Fas (APO-1/CD95) gene in transitional cell carcinomas of urinary bladder. Cancer Res 59(13):3068–3072PubMedGoogle Scholar
  260. 260.
    Shin MS, Park WS, Kim SY, Kim HS, Kang SJ, Song KY et al (1999) Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am J Pathol 154(6):1785–1791PubMedCentralPubMedGoogle Scholar
  261. 261.
    Lee SH, Shin MS, Park WS, Kim SY, Kim HS, Han JY et al (1999) Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer. Oncogene 18(25):3754–3760PubMedGoogle Scholar
  262. 262.
    Shin MS, Kim HS, Lee SH, Lee JW, Song YH, Kim YS et al (2002) Alterations of Fas-pathway genes associated with nodal metastasis in non-small cell lung cancer. Oncogene 21(26):4129–4136PubMedGoogle Scholar
  263. 263.
    Lee SH, Shin MS, Kim HS, Park WS, Kim SY, Jang JJ et al (2000) Somatic mutations of Fas (Apo-1/CD95) gene in cutaneous squamous cell carcinoma arising from a burn scar. J Invest Dermatol 114(1):122–126PubMedGoogle Scholar
  264. 264.
    Park WS, Oh RR, Kim YS, Park JY, Lee SH, Shin MS et al (2001) Somatic mutations in the death domain of the Fas (Apo-1/CD95) gene in gastric cancer. J Pathol 193(2):162–168PubMedGoogle Scholar
  265. 265.
    Takayama H, Takakuwa T, Tsujimoto Y, Tani Y, Nonomura N, Okuyama A et al (2002) Frequent Fas gene mutations in testicular germ cell tumors. Am J Pathol 161(2):635–641PubMedCentralPubMedGoogle Scholar
  266. 266.
    Jones CL, Wain EM, Chu CC, Tosi I, Foster R, McKenzie RC et al (2010) Downregulation of Fas gene expression in Sezary syndrome is associated with promoter hypermethylation. J Invest Dermatol 130(4):1116–1125Google Scholar
  267. 267.
    Watson CJ, O’Kane H, Maxwell P, Sharaf O, Petak I, Hyland PL et al (2012) Identification of a methylation hotspot in the death receptor Fas/CD95 in bladder cancer. Int J Oncol 40(3):645–654Google Scholar
  268. 268.
    Petak I, Danam RP, Tillman DM, Vernes R, Howell SR, Berczi L et al (2003) Hypermethylation of the gene promoter and enhancer region can regulate Fas expression and sensitivity in colon carcinoma. Cell Death Differ 10(2):211–217PubMedGoogle Scholar
  269. 269.
    Carvalho JR, Filipe L, Costa VL, Ribeiro FR, Martins AT, Teixeira MR et al (2010) Detailed analysis of expression and promoter methylation status of apoptosis-related genes in prostate cancer. Apoptosis 15(8):956–965Google Scholar
  270. 270.
    Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118(Pt 2):265–267PubMedGoogle Scholar
  271. 271.
    Ozoren N, El-Deiry WS (2003) Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 13(2):135–147PubMedGoogle Scholar
  272. 272.
    Abdulghani J, El-Deiry WS (2010) TRAIL receptor signaling and therapeutics. Expert Opin Ther Targets 14(10):1091–1108Google Scholar
  273. 273.
    Lee SH, Shin MS, Kim HS, Lee HK, Park WS, Kim SY et al (2001) Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin’s lymphoma. Oncogene 20(3):399–403PubMedGoogle Scholar
  274. 274.
    Shin MS, Kim HS, Lee SH, Park WS, Kim SY, Park JY et al (2001) Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 61(13):4942–4946PubMedGoogle Scholar
  275. 275.
    Fisher MJ, Virmani AK, Wu L, Aplenc R, Harper JC, Powell SM et al (2001) Nucleotide substitution in the ectodomain of trail receptor DR4 is associated with lung cancer and head and neck cancer. Clin Cancer Res 7(6):1688–1697PubMedGoogle Scholar
  276. 276.
    Dechant MJ, Fellenberg J, Scheuerpflug CG, Ewerbeck V, Debatin KM (2004) Mutation analysis of the apoptotic “death-receptors” and the adaptors TRADD and FADD/MORT-1 in osteosarcoma tumor samples and osteosarcoma cell lines. Int J Cancer 109(5):661–667PubMedGoogle Scholar
  277. 277.
    Park WS, Lee JH, Shin MS, Park JY, Kim HS, Kim YS et al (2001) Inactivating mutations of KILLER/DR5 gene in gastric cancers. Gastroenterology 121(5):1219–1225PubMedGoogle Scholar
  278. 278.
    Lee SH, Shin MS, Kim HS, Lee HK, Park WS, Kim SY et al (1999) Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res 59(22):5683–5686PubMedGoogle Scholar
  279. 279.
    Arai T, Akiyama Y, Okabe S, Saito K, Iwai T, Yuasa Y (1998) Genomic organization and mutation analyses of the DR5/TRAIL receptor 2 gene in colorectal carcinomas. Cancer Lett 133(2):197–204PubMedGoogle Scholar
  280. 280.
    Lee KH, Lim SW, Kim HG, Kim DY, Ryu SY, Joo JK et al (2009) Lack of death receptor 4 (DR4) expression through gene promoter methylation in gastric carcinoma. Langenbecks Arch Surg 394(4):661–670PubMedGoogle Scholar
  281. 281.
    Elias A, Siegelin MD, Steinmuller A, von Deimling A, Lass U, Korn B et al (2009) Epigenetic silencing of death receptor 4 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in gliomas. Clin Cancer Res 15(17):5457–5465PubMedGoogle Scholar
  282. 282.
    Hopkins-Donaldson S, Ziegler A, Kurtz S, Bigosch C, Kandioler D, Ludwig C et al (2003) Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation. Cell Death Differ 10(3):356–364PubMedGoogle Scholar
  283. 283.
    Horak P, Pils D, Haller G, Pribill I, Roessler M, Tomek S et al (2005) Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol Cancer Res 3(6):335–343PubMedGoogle Scholar
  284. 284.
    Zhang Y, Zhang B (2008) TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5. Mol Cancer Res 6(12):1861–1871PubMedGoogle Scholar
  285. 285.
    Jin Z, McDonald ER 3rd, Dicker DT, El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279(34):35829–35839PubMedGoogle Scholar
  286. 286.
    Wu GS, Burns TF, McDonald ER 3rd, Jiang W, Meng R, Krantz ID et al (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17(2):141–143PubMedGoogle Scholar
  287. 287.
    Sheikh MS, Burns TF, Huang Y, Wu GS, Amundson S, Brooks KS et al (1998) p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 58(8):1593–1598PubMedGoogle Scholar
  288. 288.
    Wu GS, Burns TF, McDonald ER 3rd, Meng RD, Kao G, Muschel R et al (1999) Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene 18(47):6411–6418PubMedGoogle Scholar
  289. 289.
    Takimoto R, El-Deiry WS (2000) Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19(14):1735–1743PubMedGoogle Scholar
  290. 290.
    Guan B, Yue P, Clayman GL, Sun SY (2001) Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol 188(1):98–105PubMedGoogle Scholar
  291. 291.
    Liu X, Yue P, Khuri FR, Sun SY (2004) p53 upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res 64(15):5078–5083PubMedGoogle Scholar
  292. 292.
    Sheikh MS, Huang Y, Fernandez-Salas EA, El-Deiry WS, Friess H, Amundson S et al (1999) The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 18(28):4153–4159PubMedGoogle Scholar
  293. 293.
    Liu X, Yue P, Khuri FR, Sun SY (2005) Decoy receptor 2 (DcR2) is a p53 target gene and regulates chemosensitivity. Cancer Res 65(20):9169–9175PubMedGoogle Scholar
  294. 294.
    Bolze A, Byun M, McDonald D, Morgan NV, Abhyankar A, Premkumar L et al (2010) Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet 87(6):873–881Google Scholar
  295. 295.
    Soung YH, Lee JW, Kim SY, Nam SW, Park WS, Kim SH et al (2004) Mutation of FADD gene is rare in human colon and stomach cancers. APMIS 112(9):595–597PubMedGoogle Scholar
  296. 296.
    Safa AR, Day TW, Wu CH (2008) Cellular FLICE-like inhibitory protein (C-FLIP): a novel target for cancer therapy. Curr Cancer Drug Targets 8(1):37–46PubMedGoogle Scholar
  297. 297.
    Bagnoli M, Canevari S, Mezzanzanica D (2010) Cellular FLICE-inhibitory protein (c-FLIP) signalling: a key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol 42(2):210–213Google Scholar
  298. 298.
    Chang DW, Xing Z, Pan Y, Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S et al (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21(14):3704–3714PubMedCentralPubMedGoogle Scholar
  299. 299.
    Yu JW, Jeffrey PD, Shi Y (2009) Mechanism of procaspase-8 activation by c-FLIPL. Proc Natl Acad Sci U S A 106(20):8169–8174PubMedCentralPubMedGoogle Scholar
  300. 300.
    Korkolopoulou P, Saetta AA, Levidou G, Gigelou F, Lazaris A, Thymara I et al (2007) c-FLIP expression in colorectal carcinomas: association with Fas/FasL expression and prognostic implications. Histopathology 51(2):150–156PubMedGoogle Scholar
  301. 301.
    Du X, Bao G, He X, Zhao H, Yu F, Qiao Q et al (2009) Expression and biological significance of c-FLIP in human hepatocellular carcinomas. J Exp Clin Cancer Res 28:24PubMedCentralPubMedGoogle Scholar
  302. 302.
    Bagnoli M, Ambrogi F, Pilotti S, Alberti P, Ditto A, Barbareschi M et al (2009) c-FLIPL expression defines two ovarian cancer patient subsets and is a prognostic factor of adverse outcome. Endocr Relat Cancer 16(2):443–453PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departments of Medicine and Pharmacology and Chemical BiologyUniversity of Pittsburgh and the University of Pittsburgh Cancer InstitutePittsburghUSA

Personalised recommendations