Skip to main content

Lithium Ion Batteries, Electrochemical Reactions in

  • Chapter
  • First Online:
Batteries for Sustainability

Abstract

Despite their spectacular success in portable electronics applications, continued technical advances of lithium-ion batteries are crucial to establishing large-scale storage applications such as electric vehicles and enabling development of renewable intermittent energy sources, i.e., wind and solar. Paramount considerations in realizing scaled-up battery systems are safety, cost, energy density, and service lifetime. Some of these applications also require rapid charge and discharge capability. To move beyond the current generation of lithium-ion batteries, it is necessary to understand some of the outstanding materials issues of the individual components (i.e., electrodes and electrolytes) as well as the battery system as a whole where the components interact under conditions of elevated temperature and electric current flow.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Diffraction:

A phenomenon which occurs when a propagating wave encounters or interacts with an object. Diffraction techniques have become a standard method for the investigation of the atomic structure of matter.

Nuclear magnetic resonance (NMR):

A condition in which magnetic nuclei in the presence of an external magnetic field absorb and reemit electromagnetic radiation (in the radiofrequency regime). The energy absorbed depends on the strength of the magnetic field and a number of chemical and structural properties of the matter under investigation.

Photoelectron:

The electrons ejected from matter after having absorbed electromagnetic radiation of a particular wavelength.

Relaxation:

The process by which a system returns to equilibrium after a perturbation, usually characterized by a specific time t.

Solid electrolyte interphase (SEI):

Electrolyte decomposition products, both organic and inorganic, that form a protective layer on the electrodes (predominantly the anode) of lithium-ion batteries which is necessary for optimal performance and cell longevity.

Bibliography

  1. Goodenough J, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  Google Scholar 

  2. Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127

    Article  Google Scholar 

  3. Dahn JR, von Sacken U, Juzkow MW, Al-Janaby H (1991) Rechargeable LiNiO2/carbon cells. J Electrochem Soc 138:2207–2211

    Article  Google Scholar 

  4. Delmas C, Peres J, Rougier A, Demourgues A, Weill F, Chadwick A, Broussely M, Perton F, Biensan P, Willmann P (1997) On the behavior of the LixNiO2 system: an electrochemical and structural overview. J Power Sources 68(1):120–125

    Article  Google Scholar 

  5. Saadoune I, Delmas C (1996) LiNi1–yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behaviour. J Mater Chem 6(2):193–199

    Article  Google Scholar 

  6. Capitaine F, Gravereau P, Delmas C (1996) A new variety of LiMnO2 with a layered structure. Solid State Ion 89(3–4):197–202

    Article  Google Scholar 

  7. Rossen E, Jones C, Dahn J (1992) Structure and electrochemistry of LixMnyNi1–yO2. Solid State Ion 57(3–4):311–318

    Article  Google Scholar 

  8. Liu Z, Yu A, Lee J (1999) Synthesis and characterization of LiNi1–x–yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources 82:416–419

    Article  Google Scholar 

  9. Yoshio M, Noguchi H, Itoh J, Okada M, Mouri T (2000) Preparation and properties of LiCoyMnxNi1–x–yO2 as a cathode for lithium ion batteries. J Power Sources 90(2):176–181

    Article  Google Scholar 

  10. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  Google Scholar 

  11. Li H, Richter G, Maier J (2003) Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 15(9):736–739 (Weinheim, Germany)

    Article  Google Scholar 

  12. Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151(11):A1878–A1885

    Article  Google Scholar 

  13. Badway F, Cosandey F, Pereira N, Amatucci G (2003) Carbon metal fluoride nanocomposites – high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J Electrochem Soc 150(10):A1318–A1327

    Article  Google Scholar 

  14. Badway F, Pereira N, Cosandey F, Amatucci G (2003) Carbon-metal fluoride nanocomposites – structure and electrochemistry of FeF3: C. J Electrochem Soc 150(9):A1209–A1218

    Article  Google Scholar 

  15. Badway F, Mansour A, Pereira N, Al-Sharab J, Cosandey F, Plitz I, Amatucci G (2007) Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem Mater 19(17):4129–4141

    Article  Google Scholar 

  16. Armand M (1994) The history of polymer electrolytes. Solid State Ion 69:309–319

    Article  Google Scholar 

  17. Armand M (1986) Polymer electrolytes. Annu Rev Mater Sci 16:245–261

    Article  Google Scholar 

  18. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14(11):589

    Article  Google Scholar 

  19. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  20. Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N (2004) Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim Acta 49(24):4213–4222

    Article  Google Scholar 

  21. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  22. Proffen T, Billinge SJL (1999) PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J Appl Crystallogr 32:572–575

    Article  Google Scholar 

  23. McGreevy RL, Pusztai L (1988) Reverse monte carlo simulation: a new technique for the determination of disordered structures. Mol Simul 1:359–367

    Article  Google Scholar 

  24. Dedryvere R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon JM (2004) Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater 16(6):1056–1061

    Article  Google Scholar 

  25. Alamgir FM, Petersburg CF, Daniel RC, Jaye C, Fischer DA (2009) Soft X-ray characterization technique for Li batteries under operating conditions. J Synchrotron Radiat 16:610–615

    Article  Google Scholar 

  26. Stern EA (1974) Theory of extended X-Ray-absorption fine-structure. Phys Rev B 10(8):3027–3037

    Article  Google Scholar 

  27. Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures – Fourier analysis of extended X-ray – absorption fine structure. Phys Rev Lett 27(18):1204–1207

    Article  Google Scholar 

  28. Tsai YW, Hwang BJ, Ceder G, Sheu HS, Liu DG, Lee JF (2005) In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling. Chem Mater 17(12):3191–3199

    Article  Google Scholar 

  29. Yoon W, Kim N, Yang X, McBreen J, Grey C (2003) Li-6 MAS NMR and in situ X-ray studies of lithium nickel manganese oxides. J Power Sources 119:649–653

    Article  Google Scholar 

  30. Grey CP, Lee YJ (2003) Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci 5(6):883–894

    Article  Google Scholar 

  31. Carlier D, Menetrier M, Grey C, Delmas C, Ceder G (2003) Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations. Phys Rev B 67 174103:1–14

    Google Scholar 

  32. Letellier M, Chevallier F, Beguin F, Frackowiak E, Rouzaud J (2004) The first in situ Li-7 NMR study of the reversible lithium insertion mechanism in disorganised carbons. J Phys Chem Solids 65(2–3):245–251

    Article  Google Scholar 

  33. Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, New York

    Google Scholar 

  34. Slichter CP (1990) Principles of nuclear magnetic resonance. Springer, Berlin

    Google Scholar 

  35. Stejskal E, Tanner J (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  Google Scholar 

  36. Kimmich R, Unrath W, Schnur G, Rommel E (1991) NMR measurement of small self-diffusion coefficients in the fringe-field of superconducting magnets. J Magn Reson 91(1):136–140

    Google Scholar 

  37. Demco D, Johansson A, Tegenfeldt J (1994) Constant-relaxation methods for diffusion measurements in the fringe-field of superconducting magnets. J Magn Reson Ser A 110(2):183–193

    Article  Google Scholar 

  38. Gorecki W, Jeannin M, Belorizky E, Roux C, Armand M (1995) Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J Phys Cond Matter 7(34):6823–6832

    Article  Google Scholar 

  39. Johansson A, Gogoll A, Tegenfeldt J (1996) Diffusion and ionic conductivity in Li(CF3SO3)PEG(10) and LiN(CF3SO2)(2)PEG(10). Polymer 37(8):1387–1393

    Article  Google Scholar 

  40. Hayamizu K, Aihara Y, Price W (2000) Correlating the NMR self-diffusion and relaxation measurements with ionic conductivity in polymer electrolytes composed of cross-linked poly(ethylene oxide-propylene oxide) doped with LiN(SO2CF3)(2). J Chem Phys 113(11):4785–4793

    Article  Google Scholar 

  41. Hayamizu K, Aihara Y, Price W (2001) NMR and ion conductivity studies on cross-linked poly(ethyleneoxide-propyleneoxide) and branched polyether doped with LiN(SO2CF3)(2). Electrochim Acta 46(10–11):1475–1485

    Article  Google Scholar 

  42. Adebahr J, Forsyth M, Gavelin P, Jacobsson P, Oradd G (2002) Ion and solvent dynamics in gel electrolytes based on ethylene oxide grafted acrylate polymers. J Phys Chem B 106(47):12119–12123

    Article  Google Scholar 

  43. Gorecki W, Roux C, Clemancey M, Armand M, Belorizky E (2002) NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2n + 1)(SO2CmF2m + 1)]. Chemphyschem 3(7):620–625

    Article  Google Scholar 

  44. Croce F, Appetecchi G, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  Google Scholar 

  45. Zhou F, MacFarlane D, Forsyth M (2003) Boroxine ring compounds as dissociation enhancers in gel polyelectrolytes. Electrochim Acta 48(12):1749–1758

    Article  Google Scholar 

  46. Kalita M, Bukat M, Ciosek M, Siekierski M, Chung S, Rodriguez T, Greenbaum S, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W (2005) Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochimia Acta 50(19):3942–3948

    Article  Google Scholar 

  47. Koudriachova MV, Harrison NM, de Leeuw SW (2002) Density-functional simulations of lithium intercalation in rutile. Phys Rev B 65 235423:1–12

    Google Scholar 

  48. Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74 094105:1–7

    Google Scholar 

  49. Tibbetts K, Miranda CR, Meng YS, Ceder G (2007) An ab initio study of lithium diffusion in titanium disulfide nanotubes. Chem Mater 19(22):5302–5308

    Article  Google Scholar 

  50. Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56(3):1354–1365

    Article  Google Scholar 

  51. Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR (1998) Ab initio calculation of the lithium-tin voltage profile. Phys Rev B 58(23):15583–15588

    Article  Google Scholar 

  52. Meng YS, Wu YW, Hwang BJ, Li Y, Ceder G (2004) Combining ab initio computation with experiments for designing new electrode materials for advanced lithium batteries: LiNi1/3Fe1/6Co1/6Mn1/3O2. J Electrochem Soc 151(8):A1134–A1140

    Article  Google Scholar 

  53. Arroyo-DeDompablo ME, Van der Ven A, Ceder G (2002) First-principles calculations of lithium ordering and phase stability on LixNiO2. Phys Rev B 66 064112:1–9

    Google Scholar 

  54. Wolverton C, Zunger A (1998) Prediction of Li intercalation and battery voltages in layered versus cubic LixCoO2. J Electrochem Soc 145(7):2424–2431

    Article  Google Scholar 

  55. Hwang B, Tsai Y, Carlier D, Ceder G (2003) A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2. Chem Mater 15(19):3676–3682

    Article  Google Scholar 

  56. Kganyago KR, Ngoepe PE, Catlow CRA (2003) Ab initio calculation of the voltage profile for LiC6. Solid State Ion 159(1–2):21–23

    Article  Google Scholar 

  57. Launay M, Boucher F, Gressier P, Ouvrard G (2003) A DFT study of lithium battery materials: application to the β-VOXO4 systems (X = P, As, S). J Solid State Chem 176(2):556–566

    Article  Google Scholar 

  58. Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys Rev B 70 235121:1–8

    Google Scholar 

  59. Reed J, Ceder G (2002) Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O-2. Electrochem State Lett 5(7):A145–A148

    Article  Google Scholar 

  60. Arroyo-DeDompablo ME, Ceder G (2003) First-principles calculations on LixNiO2: phase stability and monoclinic distortion. J Power Sources 119121:654–657

    Article  Google Scholar 

  61. Carlier D, Van der Ven A, Delmas C, Ceder G (2003) First-principles investigation of phase stability in the O-2-LiCoO2 system. Chem Mater 15(13):2651–2660

    Article  Google Scholar 

  62. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  63. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  64. Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  Google Scholar 

  65. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  Google Scholar 

  66. Bar-Tow D, Peled E, Burstein L (1999) A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J Electrochem Soc 146(3):824–832

    Article  Google Scholar 

  67. Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 97–98:52–57

    Article  Google Scholar 

  68. Lu M, Cheng H, Yang Y (2008) A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochim Acta 53(9):3539–3546

    Article  Google Scholar 

  69. Peled E, Golodnitsky D, Ulus A, Yufit V (2004) Effect of carbon substrate on SEI composition and morphology. Electrochim Acta 50(2–3):391–395

    Article  Google Scholar 

  70. Ota H, Kominato A, Chun WJ, Yasukawa E, Kasuya S (2003) Effect of cyclic phosphate additive in non-flammable electrolyte. J Power Sources 119:393–398

    Article  Google Scholar 

  71. Andersson AM, Edstrom K (2001) Chemical composition and morphology of the elevated temperature SEI on graphite. J Electrochem Soc 148(10):A1100–A1109

    Article  Google Scholar 

  72. Andersson AM, Edstrom K, Rao N, Wendsjo A (1999) Temperature dependence of the passivation layer on graphite. J Power Sources 82:286–290

    Article  Google Scholar 

  73. Meyer BM, Leifer N, Sakamoto S, Greenbaum SG, Grey CP (2005) High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries. Electrochem Solid State Lett 8(3):A145–A148

    Article  Google Scholar 

  74. Dupre N, Martin JF, Degryse J, Fernandez V, Soudan P, Guyomard D (2010) Aging of the LiFePO4 positive electrode interface in electrolyte. J Power Sources 195(21):7415–7425

    Article  Google Scholar 

  75. Dupre N, Martin J, Oliveri J, Soudan P, Guyomard D, Yamada A, Kanno R (2009) Aging of the LiNi1/2Mn1/2O2 positive electrode interface in electrolyte. J Electrochem Soc 156(5):C180–C185

    Article  Google Scholar 

  76. Dupre N, Martin JF, Guyomard D, Yamada A, Kanno R (2008) Detection of surface layers using Li-7 MAS NMR. J Mater Chem 18(36):4266–4273

    Article  Google Scholar 

  77. Leifer N, Smart MC, Prakash GKS, Gonzalez L, Sanchez L, Smith KA, Bhalla P, Grey CP, Greenbaum SG (2011) 13C solid state NMR suggests unusual breakdown products in SEI formation on lithium ion electrodes. J Electrochem Soc 158(5):A471–A480

    Article  Google Scholar 

  78. Fernicola A, Weise F, Greenbaum S, Kagimoto J, Scrosati B, Soleto A (2009) Lithium-ion-conducting electrolytes: from an ionic liquid to the polymer membrane. J Electrochem Soc 156(7):A514–A520

    Article  Google Scholar 

  79. Scrosati B (1995) Battery technology – challenge of portable power. Nature 373:557–558

    Article  Google Scholar 

  80. Gray FM (1991) Solid polymer electrolytes: fundamentals and electrochemical applications. VCH, New York

    Google Scholar 

  81. Kalita M, Bukat M, Ciosek M, Siekierski M, Chung SH, Rodriguez T, Greenbaum SG, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W (2005) Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochim Acta 50(19):3942–3948

    Article  Google Scholar 

  82. Periasamy P, Tatsumi K, Shikano M, Fujieda T, Saito Y, Sakai T, Mizuhata M, Kajinami A, Deki S (2000) Studies on PVdF-based gel polymer electrolytes. J Power Sources 88(2):269–273

    Article  Google Scholar 

  83. Pawlowska A, Zukowska G, Kalita M, Solgala A, Parzuchowski P, Siekierski M (2007) The effect of receptor-polymer matrix compatibility on properties of PEO-based polymer electrolytes containing a supramolecular additive. Part 1. Studies on phenomenon of compatibility. J Power Sources 173(2):755–764

    Article  Google Scholar 

  84. Bloise A, Donoso J, Magon C, Rosario A, Pereira E (2003) NMR and conductivity study of PEO-based composite polymer electrolytes. Electrochim Acta 48(14–16):2239–2246

    Article  Google Scholar 

  85. Masuda Y, Seki M, Nakayama M, Wakihara M, Mita H (2006) Study on ionic conductivity of polymer electrolyte plasticized with PEG-aluminate ester for rechargeable lithium ion battery. Solid State Ion 117(9–10):843–846

    Article  Google Scholar 

  86. Dai Y, Wang Y, Greenbaum S, Bajue S, Golodnitsky D, Ardel G, Strauss E, Peled E (1998) Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochim Acta 43(10–11):1557–1561

    Article  Google Scholar 

  87. Best A, Adebahr J, Jacobsson P, MacFarlane D, Forsyth M (2001) Microscopic interactions in nanocomposite electrolytes. Macromolecules 34(13):4549–4555

    Article  Google Scholar 

  88. Adebahr J, Best A, Byrne N, Jacobsson P, MacFarlane D, Forsyth M (2003) Ion transport in polymer electrolytes containing nanoparticulate TiO2: The influence of polymer morphology. Phys Chem Chem Phys 5:720–725

    Article  Google Scholar 

  89. Berthier C, Gorecki W, Minier M, Armand M, Chabagno J, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11(1):91–95

    Article  Google Scholar 

  90. Chung S, Jeffrey K, Stevens J (1991) A Li-7 nuclear magnetic resonance study of LiCF3SO3 complexed in poly(propylene-glycol). J Chem Phys 94(3):1803–1811

    Article  Google Scholar 

  91. Donoso J, Bonagamba T, Panepucci H, Oliveira L, Gorecki W, Berthier C, Armand M (1993) Nuclear magnetic relaxation study of poly(ethylene oxide)-lithium salt based electrolytes. J Chem Phys 98(12):10026–10036

    Article  Google Scholar 

  92. Johansson A, Tegenfeldt J (1996) Segmental mobility in complexes of Pb(CF3SO3)(2) and poly(ethylene oxide) studied by NMR spectroscopy. J Chem Phys 104(13):5317–5325

    Article  Google Scholar 

  93. Chung S, Wang Y, Greenbaum S, Golodnitsky D, Peled E (1999) Uniaxial stress effects in poly(ethylene oxide)-LiI polymer electrolyte film – a Li-7 nuclear magnetic resonance study. Electrochem Solid State Lett 2(11):553–555

    Article  Google Scholar 

  94. Golodnitsky D, Livshits E, Kovarsky R, Peled E, Chung S, Suarez S, Greenbaum S (2004) New generation of ordered polymer electrolytes for lithium batteries. Electrochem Solid State Lett 7(11):A412–A415

    Article  Google Scholar 

  95. Golodnitsky D, Livshits E, Ulus A, Barkay Z, Lapides I, Peled E, Chung S, Greenbaum S (2001) Fast ion transport phenomena in oriented semicrystalline LiI-P(EO)n-based polymer electrolytes. J Phys Chem A 105(44):10098–10106

    Article  Google Scholar 

  96. Armand MB, Chabagno JM, Duclot MJ (1979) Fast ion transport in solids. Elsevier, New York

    Google Scholar 

  97. Gadjourova Z, Andreev Y, Tunstall D, Bruce P (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–523

    Article  Google Scholar 

  98. Padhi A, Nanjundaswamy K, Goodenough J (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194

    Article  Google Scholar 

  99. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem Solid State Lett 7(2):A30–A32

    Article  Google Scholar 

  100. Yamada A, Chung S, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224–A229

    Article  Google Scholar 

  101. Padhi A, Nanjundaswamy K, Masquelier C, Okada S, Goodenough J (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144(5):1609–1613

    Article  Google Scholar 

  102. Tucker M, Doeff M, Richardson T, Finones R, Cairns E, Reimer J (2002) Hyperfine fields at the Li site in LiFePO4-type olivine materials for lithium rechargeable batteries: a Li-7 MAS NMR and SQUID study. J Am Chem Soc 124(15):3832–3833

    Article  Google Scholar 

  103. Gee B, Horne CR, Cairns EJ, Reimer JA (1998) Supertransferred hyperfine fields at Li-7: Variable temperature Li-7 NMR studies of LiMn2O4-based spinels. J Phys Chem B 102(50):10142–10149

    Article  Google Scholar 

  104. Wilcke SL, Lee YJ, Cairns EJ, Reimer JA (2007) Covalency measurements via NMR in lithium metal phosphates. Appl Magn Reson 32(4):547–563

    Article  Google Scholar 

  105. Leifer N, Colon A, Martocci K, Greenbaum S, Alamgir F, Reddy T, Gleason N, Leising R, Takeuchi E (2007) Nuclear magnetic resonance and X-ray absorption spectroscopic studies of lithium insertion in silver vanadium oxide cathodes. J Electrochem Soc 154(6):A500–A506

    Article  Google Scholar 

  106. Crespi A, Skarstad P, Zandbergen H (1995) Characterization of silver vanadium oxide cathode material by high-resolution electron microscopy. J Power Sources 54(1):68–71

    Article  Google Scholar 

  107. Takeuchi K, Marschilok A, Davis S, Leising R, Takeuchi E (2001) Silver vanadium oxides and related battery applications. Coord Chem Rev 219–221:283–310

    Article  Google Scholar 

  108. Ramasamy R, Feger C, Strange T, Popov B (2006) Discharge characteristics of silver vanadium oxide cathodes. J Appl Electrochem 36(4):487–497

    Article  Google Scholar 

  109. Vijayakumar M, Selvasekarapandian S, Nakamura K, Kanashiro T, Kesavamoorthy R (2004) Li-7 MAS-NMR and vibrational spectroscopic investigations of LixV2O5 (x = 10, 12 and 14). Solid State Ion 167(1–2):41–47

    Article  Google Scholar 

  110. Holland G, Buttry D, Yarger J (2002) Li-7 NMR studies of electrochemically lithiated V2O5 xerogels. Chem Mater 14(9):3875–3881

    Article  Google Scholar 

  111. Holland G, Yarger J, Buttry D, Huguenin F, Torresi R (2003) Solid-state NMR study of ion-exchange processes in V2O5 xerogel, polyaniline/V2O5, and sulfonated polyaniline/V2O5 nanocomposites. J Electrochem Soc 150(12):A1718–A1722

    Article  Google Scholar 

  112. Nakamura K, Nishioka D, Michihiro Y, Vijayakumar M, Selvasekarapandian S, Kanashiro T (2006) Li-7 and V-51 NMR study on Li+ ionic diffusion in lithium intercalated LixV2O5. Solid State Ion 177(1–2):129–135

    Article  Google Scholar 

  113. West K, Crespi A (1995) Lithium insertion into silver vanadium-oxide, Ag2V4O11. J Power Sources 54(2):334–337

    Article  Google Scholar 

  114. Rozier P, Galy J (1997) Ag1.2V3O8 crystal structure: Relationship with Ag2V4O11–y interpretation of physical properties. J Solid State Chem 134(2):294–301

    Article  Google Scholar 

  115. Rozier P, Savariault J, Galy J, Marichal C, Hirschinger J, Granger P (1996) Epsilon-LixV2O5 bronzes (0.33 ≤ × ≤ 0.64) a joint study by X-ray powder diffraction and 6Li, 7Li MAS NMR. Eur J Solid State Inorg Chem 33(1):1–13

    Google Scholar 

  116. Kuwabara K, Itoh M, Sugiyama K (1986) Ionic-electronic mixed conduction in LixV2O5. Solid State Ion 20(2):135–139

    Article  Google Scholar 

  117. Garcia-Alvarado F, Tarascon J (1994) Lithium intercalation in Ag2V4O11. Solid State Ion 73(3–4):247–254

    Article  Google Scholar 

  118. Stallworth P, Kostov S, denBoer M, Greenbaum S, Lampe-Onnerud C (1998) X-ray absorption and magnetic resonance spectroscopic studies of LixV6O13. J Appl Phys 83(3):1247–1255

    Article  Google Scholar 

  119. Yamakawa N, Jiang M, Grey CP (2009) Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction. Chem Mater 21(14):3162–3176

    Article  Google Scholar 

  120. Yamakawa N, Jiang M, Key B, Grey CP (2009) Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study. J Am Chem Soc 131(30):10525–10536

    Article  Google Scholar 

  121. Chung JS, Sohn HJ (2002) Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J Power Sources 108(1–2):226–231

    Article  Google Scholar 

  122. Debart A, Dupont L, Patrice R, Tarascon JM (2006) Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: the intriguing case of the copper sulphide. Solid State Sci 8(6):640–651

    Article  Google Scholar 

  123. Ikeda H, Narukawa S (1983) Behavior of various cathode materials for non-aqueous lithium cells. J Power Sources 9(3–4):329–334

    Article  Google Scholar 

  124. Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon J (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148(4):A285–A292

    Article  Google Scholar 

  125. Arai H, Okada S, Sakurai Y, Yamaki J (1997) Cathode performance and voltage estimation of metal trihalides. J Power Sources 68(2):716–719

    Article  Google Scholar 

  126. Cosandey F, Al-Sharab J, Badway F, Amatucci G, Stadelmann P (2007) EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries. Microsc Microanal 13(2):87–95

    Article  Google Scholar 

  127. Doe R, Persson K, Meng Y, Ceder G (2008) First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium. Chem Mater 20(16):5274–5283

    Article  Google Scholar 

  128. Nielsen U, Paik Y, Julmis K, Schoonen M, Reeder R, Grey C (2005) Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: A Li-6 MAS NMR study of adsorption and absorption on goethite. J Phys Chem B 109(39):18310–18315

    Article  Google Scholar 

  129. Kim J, Nielsen U, Grey C (2008) Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A H-2 and Li-7 solid-state MAS NMR study. J Am Chem Soc 130(4):1285–1295

    Article  Google Scholar 

  130. Liao P, MacDonald B, Dunlap R, Dahn J (2008) Combinatorially prepared [LiF](1-x)Fe-x nanocomposites for positive electrode materials in Li-ion batteries. Chem Mater 20(2):454–461

    Article  Google Scholar 

  131. Breger J, Dupre N, Chupas P, Lee P, Proffen T, Parise J, Grey C (2005) Short- and long-range order in the positive electrode material, Li(NiMn)(0.5)O-2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study. J Am Chem Soc 127(20):7529–7537

    Article  Google Scholar 

  132. Yoon W, Paik Y, Yang X, Balasubramanian M, McBreen J, Grey C (2002) Investigation of the local structure of the LiNi0.5Mn0.5O2 cathode material during electrochemical cycling by X-ray absorption and NMR spectroscopy. Electrochem Solid State Lett 5(11):A263–A266

    Article  Google Scholar 

  133. Yoon W, Iannopollo S, Grey C, Carlier D, Gorman J, Reed J, Ceder G (2004) Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2–x)/3Li(1–2x)/3]O−2 – NMR studies and first principles calculations. Electrochem Solid State Lett 7(7):A167–A171

    Article  Google Scholar 

  134. Van der Ven A, Ceder G (2004) Ordering in Li−x(Ni0.5Mn0.5)O–2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries. Electrochem Commun 6(10):1045–1050

    Article  Google Scholar 

  135. Meng YS, Ceder G, Grey CP, Yoon W-S, Shao-Horn Y (2004) Understanding the crystal structure of layered LiNi0.5Mn0.5O2 by electron diffraction and powder diffraction simulation. Electrochem Solid State Lett 7(6):A155–A158

    Article  Google Scholar 

  136. Cahill LS, Chapman RP, Britten JF, Goward GR (2006) Li-7 NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)(3). J Phys Chem B 110(14):7171–7177

    Article  Google Scholar 

  137. Matsumura Y, Wang S, Mondori J (1995) Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 33(10):1457–1462

    Article  Google Scholar 

  138. Wang S, Kakumoto T, Matsui H, Matsumura Y (1999) Mechanism of lithium insertion into disordered carbon. Synth Met 103(1–3):2523–2524

    Article  Google Scholar 

  139. Nakagawa Y, Wang S, Matsumura Y, Yamaguchi C (1997) Li-7-NMR study of lithium charged in carbon electrode. Synth Met 85(1–3):1363–1364

    Article  Google Scholar 

  140. Conard J, Estrade H (1977) Résonance magnétique nucléaire du lithium interstitiel dans le graphite. Mater Sci Eng 31:173–176

    Article  Google Scholar 

  141. Peled E, Menachem C, BarTow D, Melman A (1996) Improved graphite anode for lithium-ion batteries – chemically bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143(1):L4–L7

    Article  Google Scholar 

  142. Menachem C, Wang Y, Flowers J, Peled E, Greenbaum S (1998) Characterization of lithiated natural graphite before and after mild oxidation. J Power Sources 76(2):180–185

    Article  Google Scholar 

  143. Wang Y, Yufit V, Guo X, Peled E, Greenbaum S (2001) Li-7 nuclear magnetic resonance study of lithium insertion in pristine and partially oxidized graphite. J Power Sources 94(2):230–237

    Article  Google Scholar 

  144. Gotoh K, Maeda M, Nagai A, Goto A, Tansho M, Hashi K, Shimizu T, Ishida H (2006) Properties of a novel hard-carbon optimized to large size Li ion secondary battery studied by Li-7 NMR. J Power Sources 162(2):1322–1328

    Article  Google Scholar 

  145. Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, Srinivasan V, Kostecki R, Ceder G (2010) Lithium diffusion in graphitic carbon. J Phys Chem Lett 1(8):1176–1180

    Article  Google Scholar 

  146. Gerald RE, Klingler RJ, Sandi G, Johnson CS, Scanlon LG, Rathke JW (2000) Li-7 NMR study of intercalated lithium in curved carbon lattices. J Power Sources 89(2):237–243

    Article  Google Scholar 

  147. Chevallier F, Letellier M, Morcrette M, Tarascon JM, Frackowiak E, Rouzaud JN, Beguin F (2003) In situ Li-7-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons. Electrochem Solid State Lett 6(11):A225–A228

    Article  Google Scholar 

  148. Letellier M, Chevallier F, Clinard C, Frackowiak E, Rouzaud JN, Beguin F, Morcrette M, Tarascon JM (2003) The first in situ Li-7 nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries. J Chem Phys 118(13):6038–6045

    Article  Google Scholar 

  149. Key B, Bhattacharyya R, Morcrette M, Seznec V, Tarascon JM, Grey CP (2009) Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc 131(26):9239–9249

    Article  Google Scholar 

  150. Nesper R (1990) Structure and chemical bonding in zintl-phases containing Lithium. Prog Solid State Chem 20(1):1–45

    Article  Google Scholar 

Further Readings

  • Balbuena PB, Wang Y (2004) Lithium-ion batteries: solid electrolyte interphase. Imperial College Press, London

    Book  Google Scholar 

  • Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

The authors thank past and present members of the solid-state NMR group at Hunter College for their contributions and gratefully acknowledge support from the US Department of Energy and the U.S. Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Sideris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sideris, P.J., Greenbaum, S.G. (2013). Lithium Ion Batteries, Electrochemical Reactions in. In: Brodd, R. (eds) Batteries for Sustainability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5791-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5791-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5790-9

  • Online ISBN: 978-1-4614-5791-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics