Skip to main content

Lithium Battery Electrolyte Stability and Performance from Molecular Modeling and Simulations

  • Chapter
  • First Online:
Batteries for Sustainability
  • 4195 Accesses

Abstract

Lithium batteries are complex devices whose performance optimization necessitates that they be well understood on multiple timescales and length scales, ranging from systems level to molecular. Optimization of the electrolyte, in particular, requires detailed, fundamental, molecular-level understanding of the chemical features that lead to stable electrolytes with large electrochemical windows – what electrolyte solvents and additives facilitate the formation of stable solid electrolyte interface layers and which features of the electrolyte result in good bulk and interfacial lithium transport properties as well as thermal stability, low-temperature transport, and low volatility/high safety [1, 2].

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Interfacial impedance:

The resistance to lithium motion at the interface between the electrolyte and an electrode due to structure imposed on the electrolyte by the electrode, barriers to intercalation into the electrode, lithium desolvation energy, and/or the SEI layer.

Ionic liquid electrolyte:

An electrolyte comprised of a lithium salt dissolved in a room-temperature ionic liquid.

One-electron reduction:

The reduction of an electrolyte molecule by a single electron resulting in formation of species believed to be important contributors to the outer part of the SEI.

Organic liquid electrolyte:

An electrolyte comprised of a lithium salt dissolved in liquid carbonates, esters, ethers, or a mixture thereof.

Oxidative stability:

The ability of an electrolyte to remain electrochemically stable against oxidation at the surface of the cathode.

SEI layer:

The layer of electrolyte decomposition products that forms at the interface between an electrode (primarily the anode) and the electrolyte, called the solid electrolyte interphase or solid electrolyte interface. The SEI is believed to be comprised of an inner SEI layer and an outer SEI layer.

Solid polymer electrolyte:

An electrolyte comprised of a lithium salt dissolved in a polymer matrix.

Two-electron reduction:

The reduction of an electrolyte molecule by two electrons resulting in formation of species believed to be important contributors to the inner part of the SEI.

Bibliography

  1. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303

    Article  Google Scholar 

  2. Armand M, Tarascon JM (2008) Build better batteries. Nature 451:652

    Article  Google Scholar 

  3. Zhang XR, Pugh JK, Ross PN (2001) Computation of thermodynamic oxidation potentials of organic solvents using density functional theory. J Electrochem Soc 148:E183

    Article  Google Scholar 

  4. Fu Y, Liu L, Yu HZ, Wang YM, Guo QX (2005) Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. J Am Chem Soc 127:7227

    Article  Google Scholar 

  5. Han YK, Jung J, Yu S, Lee H (2009) Understanding the characteristics of high-voltage additives in Li-ion batteries: solvent effects. J Power Sour 187:581

    Article  Google Scholar 

  6. Ue M, Murakami A, Nakamura S (2002) Anodic stability of several anions examined by Ab initio molecular orbital and density functional theories. J Electrochem Soc 149:A1572

    Article  Google Scholar 

  7. Johansson P (2006) Intrinsic anion oxidation potentials. J Phys Chem A 110:12077

    Article  Google Scholar 

  8. Johansson P (2007) Intrinsic anion oxidation potentials (vol 110, pg 12077, 2006). J Phys Chem A 111:1378

    Article  Google Scholar 

  9. Wang RL, Buhrmester C, Dahn JR (2006) Calculations of oxidation potentials of redox shuttle additives for Li-ion cells. J Electrochem Soc 153:A445

    Article  Google Scholar 

  10. Trasatti S (1986) The absolute electrode potential – an explanatory note (recommendations 1986). Pure Appl Chem 58:955–966

    Article  Google Scholar 

  11. Isse AA, Gennaro A (2010) Absolute potential of the standard hydrogen electrode and the problem of interconversion of potentials in different solvents. J Phys Chem B 114:7894

    Article  Google Scholar 

  12. Abe K, Hattori T, Kawabe K, Ushigoe Y, Yoshitake H (2007) Functional electrolytes. J Electrochem Soc 154:A810

    Article  Google Scholar 

  13. Zhang XR, Kostecki R, Richardson TJ, Pugh JK, Ross PN (2001) Electrochemical and infrared studies of the reduction of organic carbonates. J Electrochem Soc 148:A1341

    Article  Google Scholar 

  14. Wang YX, Nakamura S, Ue M, Balbuena PB (2001) Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. J Am Chem Soc 123:11708

    Article  Google Scholar 

  15. Vollmer JM, Curtiss LA, Vissers DR, Amine K (2004) Reduction mechanisms of ethylene, propylene, and vinylethylene carbonates. J Electrochem Soc 151:A178

    Article  Google Scholar 

  16. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 55(22):6332–6341

    Article  Google Scholar 

  17. Aurbach D (2000) Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. Power Sour 89:206

    Article  Google Scholar 

  18. Aurbach D et al (1994) The Correlation between the surface-chemistry and the performance of Li-carbon intercalation anodes for rechargeable rocking-chair type batteries. J Electrochem Soc 141:603

    Article  Google Scholar 

  19. Aurbach D, Einely Y, Zaban A (1994) The surface-chemistry of lithium electrodes in alkyl carbonate solutions. J Electrochem Soc 141:L1

    Article  Google Scholar 

  20. Aurbach D et al (1995) The study of electrolyte-solutions based on ethylene and diethyl carbonates for rechargeable Li batteries. 1. Li metal anodes. J Electrochem Soc 142:2873–2882

    Article  Google Scholar 

  21. Aurbach D et al (1995) The study of electrolyte-solutions based on ethylene and diethyl carbonates for rechargeable Li batteries. 2. graphite-electrodes. J Electrochem Soc 142:2882–2890

    Article  Google Scholar 

  22. Li T, Balbuena PB (2000) Theoretical studies of the reduction of ethylene carbonate. Chem Phys Lett 317:421

    Article  Google Scholar 

  23. Tasaki K, Kanda K, Kobayashi T, Nakamura S, Ue M (2006) Theoretical studies on the reductive decompositions of solvents and additives for lithium-ion batteries near lithium anodes. J Electrochem Soc 153:A2192

    Article  Google Scholar 

  24. Wang YX, Nakamura S, Tasaki K, Balbuena PB (2002) Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive? J Am Chem Soc 124:4408

    Article  Google Scholar 

  25. Wang YX, Balbuena PB (2002) Theoretical insights into the reductive decompositions of propylene carbonate and vinylene carbonate: density functional theory studies. J Phys Chem B 106:4486

    Article  Google Scholar 

  26. Aurbach D, Weissman I, Schechter A, Cohen H (1996) X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy. Langmuir 12:3991

    Article  Google Scholar 

  27. Aurbach D, Gofer Y, Benzion M, Aped P (1992) The behavior of lithium electrodes in propylene and ethylene carbonate – the major factors that influence Li cycling efficiency. J Electroanal Chem 339:451

    Article  Google Scholar 

  28. Xu K, Lam YF, Zhang SS, Jow TR, Curtis TB (2007) Solvation sheath of Li + in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J Phys Chem C 111:7411

    Article  Google Scholar 

  29. Naji A, Ghanbaja J, Humbert B, Willmann P, Billaud D (1996) Electroreduction of graphite in LiClO4-ethylene carbonate electrolyte. Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy. J Power Sour 63:33–39

    Article  Google Scholar 

  30. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107

    Article  Google Scholar 

  31. Bedrov D, Smith GD, van Duin A (2010) Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes. A molecular dynamics simulation study using the reaxFF. J Phys Chem B (accepted)

    Google Scholar 

  32. Aurbach D, Levi MD, Levi E, Schechter A (1997) Fail stabilization mechanisms graphite electrodes. J Phys Chem B 101:2195

    Article  Google Scholar 

  33. Aurbach D, Moshkovich M, Cohen Y, Schechter A (1999) The study of surface film formation on noble-metal electrodes in alkyl carbonates/Li salt solutions, using simultaneous in situ AFM, EQCM, FTIR, and EIS. Langmuir 15:2947

    Article  Google Scholar 

  34. Leung K, Budzien JL (2010) Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes. Phys Chem Chem Phys 12:6583

    Article  Google Scholar 

  35. Borodin O, Smith GD (2009) Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. J Phys Chem B 113:1763

    Article  Google Scholar 

  36. Borodin O, Smith GD (2006) LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations. J Phys Chem B 110:4971

    Article  Google Scholar 

  37. Wu H, Wick CD (2010) Computational Investigation on the role of plasticizers on ion conductivity in poly(ethylene oxide) LiTFSI electrolytes. Macromolecules 43:3502–3510

    Article  Google Scholar 

  38. Borodin O, Smith GD (2006) Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped oligoether, polyether, and carbonate-based electrolytes. J Phys Chem B 110:6293–6299

    Article  Google Scholar 

  39. Borodin O et al (2006) Li+ Transport in lithium sulfonylimide-oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI. J Phys Chem B 110:24266

    Article  Google Scholar 

  40. Siqueira LJA, Ribeiro MCC (2006) Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO4. II. Dynamical properties. J Chem Phys 125:214903

    Article  Google Scholar 

  41. Borodin O, Smith GD (2000) Molecular dynamics simulation study of LiI-doped diglyme and poly(ethylene oxide) solutions. J Phys Chem B 104:8017–8022

    Article  Google Scholar 

  42. Li S et al (2008) Molecular dynamics simulation of LiTFSI-acetamide electrolytes: structural properties. J Phys Chem B 112:6398

    Article  Google Scholar 

  43. Soetens JC, Millot C, Maigret B (1998) Molecular dynamics simulation of Li+BF 4 in ethylene carbonate, propylene carbonate, and dimethyl carbonate solvents. J Phys Chem A 102:1055

    Article  Google Scholar 

  44. Takeuchi M et al (2009) Ion-ion interactions of LiPF6 and LiBF4 in propylene carbonate solutions. J Molec Liq 148:99

    Article  Google Scholar 

  45. Brandell D, Liivat A, Aabloo A, Thomas JO (2005) Molecular dynamics simulation of the crystalline short-chain polymer system LiPF6 center dot PEO6 (M-w similar to 1000). J Mater Chem 15:4338–4345

    Article  Google Scholar 

  46. Brandell D, Liivat A, Kasemagi H, Aabloo A, Thomas JO (2005) Molecular dynamics simulation of the LiPF6 center dot PEO6 structure. J Mater Chem 15:1422–1428

    Article  Google Scholar 

  47. Borodin O, Smith GD, Jaffe RL (2001) Ab initio quantum chemistry and molecular dynamics simulations studies of LiPF6/poly(ethylene oxide) interactions. J Comput Chem 22:641

    Article  Google Scholar 

  48. Li T, Balbuena PB (1999) Theoretical studies of lithium perchlorate in ethylene carbonate, propylene carbonate, and their mixtures. J Electrochem Soc 146:3613

    Article  Google Scholar 

  49. Borodin O, Smith GD (2007) Li+ transport mechanism in oligo(ethylene oxide)s compared to carbonates. J Solution Chem 36:803

    Article  Google Scholar 

  50. Newman J, Thomas KE, Hafezi H, Wheeler DR (2003) Modeling of lithium-ion batteries. J Power Sour 119:838

    Article  Google Scholar 

  51. Hayashi K, Nemoto Y, Tobishima S, Yamaki J (1997) Electrolyte for high voltage Li/LiMn1.9Co0.1O4 cells. J Power Sour 68:316–319

    Article  Google Scholar 

  52. Saunier J, Gorecki W, Alloin F, Sanchez JY (2005) NMR study of cation, anion, and solvent mobilities in macroporous poly(vinylidene fluoride). J Phys Chem B 109:2487–2492

    Article  Google Scholar 

  53. Morita M, Asai Y, Yoshimoto N, Ishikawa M (1998) A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts. J Chem Soc Faraday Trans 94:3451–3456

    Article  Google Scholar 

  54. Hayamizu K, Aihara Y, Arai S, Martinez CG (1999) Pulse-gradient spin-echo H-1, Li-7, and F-19 NMR diffusion and ionic conductivity measurements of 14 organic electrolytes containing LiN(SO2CF3)2. J Phys Chem B 103:519–524

    Article  Google Scholar 

  55. Aihara Y et al (2004) Ion transport properties of six lithium salts dissolved in gamma-butyrolactone studied by self-diffusion and ionic conductivity measurements. J Electrochem Soc 151:A119

    Article  Google Scholar 

  56. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359

    Article  Google Scholar 

  57. Snyder JF, Ratner MA, Shriver DF (2002) Polymer electrolytes and polyelectrolytes: Monte Carlo simulations of thermal effects on conduction. Solid State Ionics 147:249

    Article  Google Scholar 

  58. Borodin O, Smith GD (2006) Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39:1620–1629

    Article  Google Scholar 

  59. Diddens D, Heuer A, Borodin O (2010) Understanding the lithium transport within a Rouse-based model for a PEO/LiTFSI polymer electrolyte. Macromolecules 43:2028

    Article  Google Scholar 

  60. Borodin O, Smith GD (2007) Molecular dynamics simulations of comb-branched poly(epoxide ether)-based polymer electrolytes. Macromolecules 40:1252–1258

    Article  Google Scholar 

  61. Borodin O, Smith GD, Bandyopadhyaya R, Redfern P, Curtiss LA (2004) Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4. Model Sim Mater Sci Eng 12:S73

    Article  Google Scholar 

  62. Londono JD et al (1997) Cation environment in molten lithium iodide doped poly(ethylene oxide). Macromolecules 30:7151–7157

    Article  Google Scholar 

  63. Annis BK, Kim MH, Wignall GD, Borodin O, Smith GD (2000) A study of the influence of LiI on the chain conformations of poly(ethylene oxide) in the melt by small-angle neutron scattering and molecular dynamics simulations. Macromolecules 33:7544–7548

    Article  Google Scholar 

  64. Saboungi ML et al (2002) Coherent neutron scattering from PEO and a PEO-based polymer electrolyte. Solid State Ionics 147:225

    Article  Google Scholar 

  65. Muller-Plathe F, van Gunsteren WF (1995) Computer simulation of a polymer electrolyte: lithium iodide in amorphous poly(ethylene oxide). J Chem Phys 103:4745–4756

    Article  Google Scholar 

  66. Maitra A, Heuer A (2007) Cation transport in polymer electrolytes: a microscopic approach. Phys Rev Lett 98:227802

    Article  Google Scholar 

  67. Maitra A, Heuer A (2007) Understanding segmental dynamics in polymer electrolytes: a computer study. Macromol Chem Phys 208:2215

    Article  Google Scholar 

  68. Sutjianto A, Curtiss LA (1998) Li+−diglyme complexes: barriers to lithium cation migration. J Phys Chem A 102:968

    Article  Google Scholar 

  69. Hayamizu K, Akiba E, Bando T, Aihara Y (2002) H-1, Li-7, and F-19 nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)n CH3 (n = 3-50) doped with LiN(SO2CF3)2. J Chem Phys 117:5929

    Article  Google Scholar 

  70. Buriez O et al (2000) Performance limitations of polymer electrolytes based on ethylene oxide polymers. J Power Sour 89:149

    Article  Google Scholar 

  71. Kerr JB et al (2002) From molecular models to system analysis for lithium battery electrolytes. J Power Sour 110:389

    Article  Google Scholar 

  72. Kerr JB (2004) Nazri GA, Pistoia G (eds) Edsin Lithium batteries: sience and technology. Kluwer, Boston

    Google Scholar 

  73. Paillard E et al (2009) Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. J Electrochem Soc 156:A891

    Article  Google Scholar 

  74. Fox DM et al (2003) Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem 5:724–727

    Article  Google Scholar 

  75. Borodin O (2009) Polarizable force field development and molecular dynamics simulations of ionic liquids. J Phys Chem B 113:11463

    Article  Google Scholar 

  76. Borodin O (2009) Relation between heat of vaporization, ion transport, molar volume, and cation and anion binding energy for ionic liquids. J Phys Chem B 113:12353

    Article  Google Scholar 

  77. Smith GD et al (2010) A comparison of fluoroalkyl-derivatized imidazolium:TFSI and alkyl-derivatized imidazolium:TFSI ionic liquids: a molecular dynamics simulation study. Phys Chem Chem Phys 12:7064

    Article  Google Scholar 

  78. Smith GD et al (2008) A comparison of ether- and alkyl-derivatized imidazolium-based room-temperature ionic liquids: a molecular dynamics simulation study. Phys Chem Chem Phys 10:6301

    Article  Google Scholar 

  79. Maginn EJ (2009) Molecular simulation of ionic liquids: current status and future opportunities. J Phys Condens Matter 21:17

    Article  Google Scholar 

  80. Koddermann T, Paschek D, Ludwig R (2007) Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics. Chemphyschem 8:2464–2470

    Article  Google Scholar 

  81. Hooper JB, Borodin O (2010) Molecular dynamics simulations of N, N, N, N-tetramethylammonium dicyanamide plastic crystal and liquid using a polarizable force field. Phys Chem Chem Phys 12:4635

    Article  Google Scholar 

  82. Borodin O, Gorecki W, Smith GD, Armand M (2010) Molecular dynamics simulation and pulsed-field gradient NMR studies of Bis(fluorosulfonyl)imide (FSI) and Bis[(trifluoromethyl)sulfonyl]imide (TFSI)-based ionic liquids. J Phys Chem B 114:6786

    Article  Google Scholar 

  83. Kelkar MS, Shi W, Maginn EJ (2008) Determining the accuracy of classical force fields for ionic liquids: atomistic simulation of the thermodynamic and transport properties of 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO4]) and its mixtures with water. Ind Eng Chem Res 47:9115–9126

    Article  Google Scholar 

  84. Tsuzuki S et al (2009) Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions. J Phys Chem B 113:10641

    Article  Google Scholar 

  85. Bedrov D, Borodin O, Li Z, Smith GD (2010) Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations. J Phys Chem B 114:4984

    Article  Google Scholar 

  86. Borodin O, Smith GD, Henderson W (2006) Li+ cation environment, transport and mechanical properties of the LiTFSI doped N-Methyl-N-alkylpyrrolidinium+TFSI ionic liquids. J Phys Chem B 110:16879

    Article  Google Scholar 

  87. Niu SA, Cao Z, Li S, Yan TY (2010) Structure and transport properties of the LiPF6 doped 1-ethyl-2,3-dimethyl-imidazolium hexaftuorophosphate ionic liquids: a molecular dynamics study. J Phys Chem B 114:877

    Article  Google Scholar 

  88. Monteiro MJ, Bazito FFC, Siqueira LJA, Ribeiro MCC, Torresi RM (2008) Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid. J Phys Chem B 112:2102

    Article  Google Scholar 

  89. Lassegues JC, Grondin J, Aupetit C, Johansson P (2009) Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. J Phys Chem A 113:305

    Article  Google Scholar 

  90. Tasaki K et al (2009) Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc 156:A1019

    Article  Google Scholar 

  91. Borodin O, Smith GD, Fan P (2006) Molecular dynamics simulations of lithium alkyl carbonates. J Phys Chem B 110:22773

    Article  Google Scholar 

  92. Xu K et al (2006) Syntheses and Characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries. J Phys Chem B 110:7708

    Article  Google Scholar 

  93. Zhuang GV, Xu K, Yang H, Jow TR, Ross PN (2005) Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6EC:EMC electrolyte. J Phys Chem B 109:17567–17573

    Article  Google Scholar 

  94. Ross P (2006), in BATT report

    Google Scholar 

  95. Zhang SS, Xu K, Jow TR (2006) EIS study on the formation of solid electrolyte. Electrochimica Acta 51:1636

    Article  Google Scholar 

  96. Zhang SS, Xu K, Jow TR (2006) Charge and discharge characteristics of a commercial LiCoO2-based 18650 Li-ion battery. J Power Sour 160:1403–1409

    Article  Google Scholar 

  97. Xu K (2007) “Charge-transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li + in nonaqueous electrolytes. J Electrochem Soc 154:A162

    Article  Google Scholar 

  98. Abraham DP, Heaton JR, Kang SH, Dees DW, Jansen AN (2008) Investigating the low-temperature impedance increase of lithium-ion cells. J Electrochem Soc 155:A41

    Article  Google Scholar 

  99. Kobayashi Y et al (2007) Comparative study of lithium secondary batteries using nonvolatile safety electrolytes. J Electrochem Soc 154:A677

    Article  Google Scholar 

  100. Seki S et al (2005) Degradation mechanism analysis of all-solid-state lithium polymer secondary batteries by using the impedance measurement. J Power Sour 146:741

    Article  Google Scholar 

  101. Bemporad D, Essex JW, Luttmann C (2004) Permeation of small molecules through a lipid bilayer: a computer simulation study. J Phys Chem B 108:4875

    Article  Google Scholar 

  102. Xu K, Lam YF, Zhang SS, Jow TR, Curtis TB (2007) Solvation sheath of Li + in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J Phys Chem C111:7411–7421

    Google Scholar 

  103. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188

    Article  Google Scholar 

  104. Aurbach D (2003) Electrode-solution interactions in Li-ion batteries: a short summary and new insights. J Power Sour 119:497

    Article  Google Scholar 

  105. He P, Zhang X, Wang YG, Cheng L, Xia YY (2008) Lithium-ion intercalation behavior of LiFePO4 in aqueous and nonaqueous electrolyte solutions. J Electrochem Soc 155:A144

    Article  Google Scholar 

  106. Yu DYW et al (2007) Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc 154:A253

    Article  Google Scholar 

  107. Smith GD, Borodin O, Russo SP, Rees RJ, Hollenkamp AF (2009) A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li + transport in carbonate and ionic liquid electrolytes. Phys Chem Chem Phys 11:9884

    Article  Google Scholar 

  108. Jow TR et al (2010) Electrolytes SEI and charge discharge kinetics in Li-ion batteries. ECS Trans 25:3

    Article  Google Scholar 

  109. Ogumi Z (2010) Interfacial reactions of lithium-ion batteries. Electrochemistry 78:319

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Energy under Contract grant DE-SC0001912 to University of Utah and Air Force Office of Scientific Research contract number FA9550-09-C-0110 for the financial support of this work. We would also like to thank T. Richard Jow and Phil Ross for their comments and suggestions. This work was partially supported by an Interagency Agreement between the U.S. Department of Energy and the U.S. Army Research Laboratory under DE-IAOI-11EE003413 for the office of vehicle technologies programs including Batteries for Advanced Transporation Technologies (BATT) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant D. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, G.D., Borodin, O. (2013). Lithium Battery Electrolyte Stability and Performance from Molecular Modeling and Simulations. In: Brodd, R. (eds) Batteries for Sustainability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5791-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5791-6_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5790-9

  • Online ISBN: 978-1-4614-5791-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics