Advertisement

Battery Components, Active Materials for

Chapter

Abstract

The active materials of a battery are the chemically active components of the two electrodes of a cell and the electrolyte between them.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Solid Electrolyte Liquid Electrolyte Voltage Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Glossary

Battery efficiency

Output energy/input energy for storage of electrically energy as chemical energy.

Electrolyte window

Separation of electrolyte LUMO and HOMO energies of a liquid electrolyte and of conduction and valence bands of a solid electrolyte.

Fermi energy

Electrochemical potential of a solid.

HOMO

Highest occupied molecular orbital.

Insertion compound

A host solid into which a working ion (guest) can be inserted/extracted reversibly over a solid-solution range.

LUMO

Lowest unoccupied molecular orbital.

Polarization, η = VOCV(q, I)

Loss of battery voltage at a state of charge q due to resistance to ion transfer inside battery cell where an electronic current I is flowing outside of battery.

Rate of charge/ discharge, nC

Time, (60/n) min, for complete discharge or charge of a battery or cell; it is also a measure of the current.

Redox couple

Cation M(m+1)/Mm+ mixed-valent energy applicable to localized-electron configurations.

SEI layer

Solid/electrolyte interface (passivation) layer at an electrode having its Fermi energy outside the electrolyte window.

Separator

A solid layer permeable to the working ion that separates anode from cathode to prevent electron transfer between them inside a battery cell.

Spin state

Refers to spin of a redox couple, which may be reduced (low-spin state) from its free-ion value (high-spin state) by a ligand-field splitting of energies of atomic orbitals that is larger than the Hund intraatomic-exchange splitting of electron spins.

State of charge

Amount of chemical energy in a battery or cell relative to the total energy available.

Tap density

A measure of the volume density, which increases with compaction of the active electrode particles.

Working ion

Ion carrying ionic current inside a battery cell.

Bibliography

Primary Literature

  1. 1.
    Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269CrossRefGoogle Scholar
  2. 2.
    Mennicke S (1992) In: Balkanski M, Takahashi T, Tuller HL (eds) Solid state ionics. North-Holland, Amsterdam, pp 3–15Google Scholar
  3. 3.
    Visco SJ, Nimon E, DeJonghe L, Katz B, Petrov A (2007) US Patent 2007/0037058Google Scholar
  4. 4.
    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1989) J Electrochem Soc 136:590–591CrossRefGoogle Scholar
  5. 5.
    Armand MB (1986) Ann Rev Mater Sci 16:245–261CrossRefGoogle Scholar
  6. 6.
    Croce F, Appetecci GB, Persi L, Scrosati B (1998) Nature 394:456–458CrossRefGoogle Scholar
  7. 7.
    Zinck L, Borck M, Ripp C, Hambitzer G (2006) J Appl Electrochem 36:1291–1295CrossRefGoogle Scholar
  8. 8.
    Dahn JR, VonSacken U, Juzkow MW, Al-Janaby H (1991) J Electrochem Soc 138:2207–2211CrossRefGoogle Scholar
  9. 9.
    Whittingham MS, Jacobson AJ (eds) (1982) Intercalation chemistry. Academic Press, New YorkGoogle Scholar
  10. 10.
    Kim Y, Goodenough JB (2010) Chem Mater 22:587–603CrossRefGoogle Scholar
  11. 11.
    Hert JT, Huang Q, McQueen T, Klimczuk T, Bos JWG, Viciu L, Cava RJ (2008) Phys Rev B 77:075119CrossRefGoogle Scholar
  12. 12.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783–799CrossRefGoogle Scholar
  13. 13.
    Gupta R, Manthiram A (1996) J Solid State Chem 121:483–491CrossRefGoogle Scholar
  14. 14.
    Saadoune I, Delmas C (1992) Solid State Ionics 53:370–375CrossRefGoogle Scholar
  15. 15.
    Ohzuka T, Makimura Y (2001) Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem Lett 8:744–745CrossRefGoogle Scholar
  16. 16.
    Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) J Mater Chem 17:3112–3125CrossRefGoogle Scholar
  17. 17.
    Delmas C, Cognac-Auradon H, Cocciontelli JM, Ménétrier M, Doumerc JP (1994) Solid State Ionics 69:257–264CrossRefGoogle Scholar
  18. 18.
    Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Mater Res Bull 18:461–472CrossRefGoogle Scholar
  19. 19.
    Sinha S, Murphy DW (1986) Solid State Ionics 20:81–84CrossRefGoogle Scholar
  20. 20.
    Goodenough JB (1983) In: Wheat TA, Ahmad A, Kuriakose AK (eds) Progress in solid electrolytes. Energy, Mines and Resources, Canada, pp 53–76Google Scholar
  21. 21.
    Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Solid State Ionics 92:1–10CrossRefGoogle Scholar
  22. 22.
    Manthiram A, Goodenough JB (1989) J Power Sources 26:403–408CrossRefGoogle Scholar
  23. 23.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  24. 24.
    Huang Y, Goodenough JB (2008) Chem Mater 20:7237–7241CrossRefGoogle Scholar
  25. 25.
    van Gool W (ed) (1973) Fast ion transport in solids. North-Holland/American Elsevier, Amsterdam/New York, pp 559–590Google Scholar
  26. 26.
    Ji X, Lee KT, Nazar LF (2009) Nature Mater 8:500–506CrossRefGoogle Scholar
  27. 27.
    Lu Y, Goodenough JB (2011) J Mater Chem. doi: 10.1039/c0jm04222fGoogle Scholar
  28. 28.
    Debart A, Paterson AJ, Bao J, Bruce PG (2008) Angew Chem Int Ed 47:4521–4524CrossRefGoogle Scholar
  29. 29.
    Lu Y-C, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc 132:12170–12171. doi:10.102/ja1036572CrossRefGoogle Scholar
  30. 30.
    Rychick M, Skyllas-Kazacos M (1988) Characteristics of new all-vanadium redox flow battery. J Power Sources 22:59–67CrossRefGoogle Scholar

Books and Reviews

  1. Balbuena PB, Wang Y (eds) (2010) Lithium ion batteries: solid-electrolyte interphase. Imperial College Press/World Scientific, London/SingaporeGoogle Scholar
  2. Bockris JO’M, Reddy AKN (1970) Modern electrochemistry. Plenum, New YorkCrossRefGoogle Scholar
  3. Bruce PG (ed) (1995) Solid state electrochemistry. Cambridge University Press, CambridgeGoogle Scholar
  4. Goodenough JB, Abruña HD, Buchanan MV (eds) (2007) Basic research needs for electrical energy storage. Office of BES, DOE, Washington http://www.sc.doe.gov/bes/reports/files/EES_rpt.pdf
  5. Hagenmuller P, Van Gool W (eds) (1978) Solid electrolytes. Academic, New YorkGoogle Scholar
  6. Huggins RA (2009) Advanced batteries. Springer, New YorkGoogle Scholar
  7. Maier J (2004) Physical chemistry of ionic materials. Wiley, ChichesterCrossRefGoogle Scholar
  8. Rieger PH (1994) Electrochemistry, vol 2. Chapman and Hall, New YorkCrossRefGoogle Scholar
  9. Wakihara M, Yamamoto O (eds) (1998) Lithium ion batteries. VCH, WeinheimGoogle Scholar
  10. Zhang SS (ed) (2007) Advanced materials and methods for lithium-ion batteries. Transworld Research Network, TrivandrumGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Texas Materials Institute, Mechanical EngineeringUniversity of TexasAustinUSA

Personalised recommendations