Skip to main content

Battery Cathodes

  • Chapter
  • First Online:

Abstract

In a discharging battery, the cathode is the positive electrode, at which electrochemical reduction takes place. As current flows, electrons from the circuit and cations from the electrolytic solution in the device move toward the cathode. Although these processes are reversed during cell charge in secondary batteries, the positive electrode in these systems is still commonly, if somewhat inaccurately, referred to as the cathode, and the negative as the anode. Because this terminology is widespread throughout the Li-ion battery literature, this usage will be adopted for this article.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Anode – (negative electrode):

This electrode donates electrons during cell discharge.

Battery:

A device consisting of one or many electrochemical cells connected together, in which chemical energy is converted into power. These can be further categorized as primary (non-rechargeable) or secondary (rechargeable) systems.

Capacity:

The amount of charge that a battery contains, often expressed as mAh or Ah. This depends on the size of the battery and its chemistry. Rated capacity also depends on the current used.

Cathode – (positive electrode):

This electrode accepts electrons during cell discharge.

Cell:

One unit of a battery, commonly consisting of an anode, a cathode, an electrolyte, a separator, and two current collectors.

Energy density or specific energy:

Energy per unit volume or weight of a material or a device, respectively, often expressed as Wh/L or Wh/kg. Energy is a product of the cell voltage and capacity per unit volume or weight.

Intercalation compound (host material, insertion compound):

Originally, this referred specifically to layered structures that can undergo insertion of ions or molecules between the van der Waals gaps, but is now commonly used for any structure that undergoes topotactic insertion reactions. For Li-ion battery materials, it refers specifically to compounds that undergo reductive insertion of lithium ions, such as graphite (used as an anode) or LiCoO2 (used as a cathode).

Jahn–Teller effect:

The geometric distortion of nonlinear complexes of certain transition metal ions to remove degeneracy. For example, Mn(III) in octahedral coordination is expected to have an electronic configuration of t 32g e 1g . Elongation along one axis of the octahedron, for example, decreases the symmetry and removes the degeneracy.

Power density and specific power:

Power per unit volume or weight, respectively, often expressed as W/L or W/kg. Power is the product of the current and the operating voltage. This is a function both of the materials used and the cell design.

Practical energy density or specific energy:

Based on the entire weight or volume of the device including inert components. It may be only 1/4–1/2 of the theoretical energy density. It may also refer only to the useable portion of the theoretical capacity of the anode or cathode material itself.

Ragone plot:

A plot showing the relationship between energy density and power density for any particular battery chemistry. This relationship is a function both of battery design and chemistry for Li-ion batteries.

Solid electrolyte interface (SEI):

A very thin (nanometer scale) layer formed on a lithium or lithiated graphite anode, which develops upon reaction with certain kinds of electrolytic solutions. The SEI is a specific kind of reaction layer that is ionically conductive but electronically insulating. It passivates the electrode, preventing further reaction with the electrolytic solution, and allows reversible operation of the device.

Specific capacity:

The amount of charge per unit weight that a battery electrode material contains, often expressed as mAh/g. This is a fundamental characteristic of the material, and depends upon its redox chemistry and structure.

Theoretical energy density, specific energy, capacity:

Based on weight or volume of the electrode active materials only.

Topotactic transformation:

A transformation in a crystal lattice involving displacement or exchange of atoms, which maintains the basic structure.

Bibliography

Primary Literature

  1. Whittingham MS, Gamble FR (1975) The lithium intercalates of the transition metal dichalcogenides. Mat Res Bull 10:363–372

    Google Scholar 

  2. Whittingham MS (1976) The role of ternary phases in cathode reactions. J Electrochem Soc 123:315–320

    Google Scholar 

  3. Whittingham MS (1978) Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog Solid Stat Chem 12:41–99

    Google Scholar 

  4. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0≤x≤1): a new cathode material for batteries of high energy density. Mat Res Bull 15:783–799

    Google Scholar 

  5. Goodenough JB (2007) Cathode materials: a personal perspective. J Power Sources 174:996–1000

    Google Scholar 

  6. Dresselhaus MS, Dresselhaus G (1981) Intercalation compounds of graphite. Adv Phys 30:139–326

    Google Scholar 

  7. Fong R, von Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137:2009–2013

    Google Scholar 

  8. Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. Prog Batteries Sol Cells 9:209–219

    Google Scholar 

  9. Akridge J, Brodd R (2010) Li-ion markets. In: Pacific power symposium, Waikoloa, HI

    Google Scholar 

  10. Srinivasan V (2008) Batteries for vehicular applications. In: AIP conference proceedings physics of sustainable energy, Berkeley, CA, vol 1044, pp 283–296

    Google Scholar 

  11. Karden E, Ploumen S, Fricke B, Miller T, Snyder K (2007) Energy storage devices for future hybrid electric vehicles. J Power Sources 168:2–11

    Google Scholar 

  12. Chalk SG, Miller JF (2006) Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J Power Sources 159:73–80

    Google Scholar 

  13. Gaines L, Cuenca R (2000) Costs of lithium-ion batteries for vehicles. Report, Center for Transportation Research, Argonne National Laboratory, Argonne

    Google Scholar 

  14. Murphy DW, Christian PA (1979) Solid state electrodes for high energy batteries. Science 205:651–656

    Google Scholar 

  15. Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO2 (R-3m) for 4 volt secondary lithium cells. J Electrochem Soc 141:2972–2977

    Google Scholar 

  16. Reimers JN, Dahn JR (1992) Electrochemical and in situ diffraction studies of lithium intercalation in LixCoO2. J Electrochem Soc 139:2091–2097

    Google Scholar 

  17. Chen Z, Lu Z, Dahn JR (2002) Staging phase transitions in LixCoO2. J Electrochem Soc 149:A1604–A1609

    Google Scholar 

  18. Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen YS, Kim H-J, Schmidt M (2002) On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochim Acta 47:4291–4306

    Google Scholar 

  19. Amatucci GG, Tarascon JM, Klein LC (1996) CoO2, The end member of the LixCoO2 solid solution. J Electrochem Soc 143:1114–1123

    Google Scholar 

  20. Van der Ven A, Aydinol MK, Ceder G (1998) First-principles evidence for stage ordering in LixCoO2. J Electrochem Soc 145:2149–2155

    Google Scholar 

  21. Xia H, Lu L, Meng YS, Ceder G (2007) Phase transitions and high voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J Electrochem Soc 154:A337–A342

    Google Scholar 

  22. Cho J, Kim G (1999) Enhancement of thermal stability of LiCoO2 by LiMn2O4 coating. Electrochem Solid-State Lett 2:253–255

    Google Scholar 

  23. Kim B, Kim C, Kim T-G, Ahn D, Park B (2006) The effect of AlPO4-coating layer on the electrochemical properties in LiCoO2 thin films. J Electrochem Soc 153:A1773–A1777

    Google Scholar 

  24. Chen Z, Dahn JR (2004) Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5V. Electrochim Acta 49:1079–1090

    Google Scholar 

  25. Thomas MGSR, David WIF, Goodenough JB (1985) Synthesis and structural characterization of the normal spinel Li[Ni2O4]. Mat Res Bull 20:1137–1146

    Google Scholar 

  26. Dahn JR, von Sacken U, Michal CA (1990) Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Sol State Ionics 44:87–97

    Google Scholar 

  27. Broussely M, Perton F, Biensan P, Bodet JM, Labat J, Lecerf A, Delmas C, Rougier A, Pérès JP (1995) LixNiO2, a promising cathode for rechargeable lithium batteries. J Power Sources 54:109–114

    Google Scholar 

  28. Dahn JR, von Sacken U, Juzkow MW, Al-Janaby H (1991) Rechargeable LiNiO2/carbon cells. J Electrochem Soc 138:2207–2211

    Google Scholar 

  29. Rougier A, Gravereau P, Delmas C (1996) Optimization of the composition of the Li1−zNi1+zO2 electrode materials: structural, magnetic, and electrochemical studies. J Electrochem Soc 143:1168–1175

    Google Scholar 

  30. Pérès JP, Delmas C, Rougier A, Broussely M, Perton F, Biensan P, Willman P (1996) The relationship between the composition of lithium nickel oxide and the loss of reversibility during the first cycle. J Phys Chem Solids 57:1057–1060

    Google Scholar 

  31. Delmas C, Pérès JP, Rougier A, Demourgues A, Weill F, Chadwick A, Broussely M, Perton F, Biensan P, Willman P (1997) On the behavior of the LixNiO2 system: an electrochemical and structural overview. J Power Sources 68:120–125

    Google Scholar 

  32. Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H (1993) Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim Acta 38:1159–1167

    Google Scholar 

  33. Dahn JR, Fuller EW, Obrovac M, von Sacken U (1994) Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Sol State Ionics 69:265–270

    Google Scholar 

  34. Ohzuku T, Ueda A, Kouguchi M (1995) Synthesis and characterization of LiAl1/4Ni3/4O2 (R-3m) for lithium-ion (Shuttlecock) batteries. J Electrochem Soc 142:4033–4439

    Google Scholar 

  35. Arai H, Sakurai Y (1999) Characteristics of LixNiO2 obtained by chemical delithiation. J Power Sources 81–82:401–405

    Google Scholar 

  36. Albrecht S, Kümpers J, Kruft M, Malcus S, Vogler C, Wahl M, Wohlfahrt-Mehrens M (2003) Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1−x(Ni1−y−zCoyMz)O2 (M=Al, Mg). J Power Sources 119–121:178–183

    Google Scholar 

  37. Onnerud PT, Shi JJ, Dalton SL, Lampe-Onnerud C (2008) Lithium metal oxide materials and methods of synthesis and use. US Patent 2008/0286460 A1

    Google Scholar 

  38. Chen CH, Liu J, Stoll ME, Henriksen G, Vissers DR, Amine K (2004) Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J Power Sources 128:278–285

    Google Scholar 

  39. Kostecki R, Lei J, McLarnon F, Shim J, Striebel K (2006) Diagnostic evaluation of detrimental phenomena in high-power lithium-ion batteries. J Electrochem Soc 153:A669–A672

    Google Scholar 

  40. Tabuchi M, Tsutsui S, Masquelier C, Kanno R, Ado K, Matsubara I, Nasu S, Kageyama H (1998) Effect of cation arrangement on the magnetic properties of lithium ferrites (LiFeO2 prepared by hydrothermal reaction and post-annealing method). J Solid State Chem 140:159–167

    Google Scholar 

  41. Ado K, Tabuchi M, Kobayashi H, Kageyama H, Nakamura O, Inaba Y, Kanno R (1997) Preparation of LiFeO2 with alpha-NaFeO2-type structure using a mixed-alkaline hydrothermal method. J Electrochem Soc 144:L177–L180

    Google Scholar 

  42. Kanno R, Shirane T, Kawamoto Y, Takeda Y, Takano M, Ohashi M, Yamaguchi Y (1996) Synthesis, structure, and electrochemical properties of a new lithium iron oxide, LiFeO2, with a corrugated layer structure. J Electrochem Soc 143:2435–2442

    Google Scholar 

  43. Morales J, Santos-Peña J (2007) Highly electroactive nanosized α-LiFeO2. Electrochem Commun 9:2116–2120

    Google Scholar 

  44. Johnson CS, Kang S-H, Vaughey JT, Pol SV, Balasubramanian M, Thackeray MM (2010) Li2O Removal from Li5FeO4: a cathode precursor for lithium-ion batteries. Chem Mater 22:1263–1270

    Google Scholar 

  45. Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500

    Google Scholar 

  46. Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25:1–71

    Google Scholar 

  47. Reed J, Ceder G (2004) Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem Rev 104:4513–4534

    Google Scholar 

  48. Paulsen JM, Thomas CL, Dahn JR (1999) Layered Li-Mn-oxide with the O2 structure: a cathode material for Li-Ion cells which does not convert to spinel. J Electrochem Soc 146:3560–3565

    Google Scholar 

  49. Eriksson TA, Lee YJ, Hollingsworth J, Reimer JA, Cairns EJ, Zhang X-F, Doeff MM (2003) Influence of substitution on the structure and electrochemistry of layered manganese oxides. Chem Mater 15:4456–4463

    Google Scholar 

  50. Dollé M, Patoux S, Doeff MM (2005) Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries. 1. substitution with Co or Ni. Chem Mater 17:1036–1043

    Google Scholar 

  51. Patoux S, Dollé M, Doeff MM (2005) Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries. 2. substitution with Al. Chem Mater 17:1044–1054

    Google Scholar 

  52. Robertson AD, Armstrong AR, Bruce PG (2000) Influence of ion exchange conditions on the defect chemistry and performance of cobalt doped layered lithium manganese oxide based intercalation compounds. Chem Commun 20:1997–1998

    Google Scholar 

  53. Doeff MM, Peng MY, Ma Y, De Jonghe LC (1994) Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries. J Electrochem Soc 141:L145–L147

    Google Scholar 

  54. Doeff MM, Richardson TJ, Kepley L (1996) Lithium insertion processes of orthorhombic NaxMnO2-base electrode materials. J Electrochem Soc 143:2507–2516

    Google Scholar 

  55. Hu F, Doeff MM (2004) Electrochemical characterization of manganese oxide cathode materials based on Na0.4MnO2. J Power Sources 129:296–302

    Google Scholar 

  56. Armstrong AR, Huang H, Jennings RA, Bruce PG (1998) Li0.44MnO2: an intercalation electrode with a tunnel structure and excellent cyclability. J Mater Chem 8:255–259

    Google Scholar 

  57. Doeff MM, Anapolsky A, Edman L, Richardson TJ, De Jonghe LC (2001) A high-rate manganese oxide for rechargeable lithium battery applications. J Electrochem Soc 148:A230–A236

    Google Scholar 

  58. Akimoto J, Awaka J, Takahashi Y, Kijima N, Tabuchi M, Nakashima A, Sakaebe H, Tatsumi K (2005) Synthesis and electrochemical properties of Li0.44MnO2 as a novel 4 V cathode material. Electrochem Solid-State Lett 8:A554–A557

    Google Scholar 

  59. Kalyani P, Chitra S, Mohan T, Gopukumar S (1999) Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J Power Sources 80:103–106

    Google Scholar 

  60. Yu DYW, Yanagida K, Kato Y, Nakamura H (2009) Electrochemical activities in Li2MnO3. J Electrochem Soc 156:A417–A424

    Google Scholar 

  61. Rossouw MH, Thackeray MM (1991) Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Mat Res Bull 26:463–473

    Google Scholar 

  62. Paik Y, Grey CP, Johnson CS, Kim J-S, Thackeray MM (2002) Lithium and deuterium NMR studies of acid-leached layered lithium manganese oxides. Chem Mater 14:5109–5115

    Google Scholar 

  63. Storey C, Kargina I, Grincourt Y, Davidson IJ, Yoo YC, Seung DY (2001) Electrochemical characterization of a new high capacity cathode. J Power Sources 97–98:541–544

    Google Scholar 

  64. Ammundsen B, Paulsen J, Davidson I, Liu R-S, Shen C-H, Chen J-M, Jang L-Y, Lee J-F (2002) Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material. J Electrochem Soc 149:A431–A436

    Google Scholar 

  65. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem Lett 8:744–745

    Google Scholar 

  66. Rossen E, Jones CDW, Dahn JR (1992) Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ionics 57:311–318

    Google Scholar 

  67. Makimura Y, Ohzuku T (2003) Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries. J Power Sources 119–121:156–160

    Google Scholar 

  68. Lu Z, MacNeil DD, Dahn JR (2001) Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett 4:A191–A194

    Google Scholar 

  69. Reed J, Ceder G (2002) Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O2. Electrochem Solid-State Lett 5:A145–A148

    Google Scholar 

  70. Yoon W-S, Grey CP, Balasubramanian M, Yang X-Q, McBreen J (2003) In situ x-ray absorption spectroscopic study on LiNi0.5Mn0.5O2 cathode material during electrochemical cycling. Chem Mater 15:3161–3169

    Google Scholar 

  71. Van der Ven A, Ceder G (2004) Ordering in Lix(Ni0.5Mn0.5)O2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries. Electrochem Commun 6:1045–1050

    Google Scholar 

  72. Yoon W-S, Paik Y, Yang X-Q, Balasubramanian M, McBreen J, Grey CP (2002) Investigation of the local structure of the LiNi0.5Mn0.5O2 cathode material during electrochemical cycling by x-ray absorption and NMR spectroscopy. Electrochem Solid State Lett 5:A263–A266

    Google Scholar 

  73. Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J Electrochem Soc 149:A778–A791

    Google Scholar 

  74. Kang S-H, Park S-H, Johnson CS, Amine K (2007) Effects of Li content on structure and electrochemical properties of Li1+x(Ni0.5Mn0.5)1−xO2 (0 ≤ x ≤ 0.15) electrodes in lithium cells (1.0-4.8 V). J Electrochem Soc 154:A268–A274

    Google Scholar 

  75. Kang K, Meng YS, Bréger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980

    Google Scholar 

  76. Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 119–121:171–174

    Google Scholar 

  77. Koyama Y, Tanaka I, Adachi H, Makimura Y, Ohzuku T (2003) Crystal and electronic structures of superstructural Li1−x[Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1). J Power Sources 119–121:644–648

    Google Scholar 

  78. Hwang BJ, Tsai YW, Carlier D, Ceder G (2003) A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2. Chem Mater 15:3676–3682

    Google Scholar 

  79. Kim J-M, Chung H-T (2003) The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2. Electrochim Acta 49:937–944

    Google Scholar 

  80. Kobayashi H, Arachi Y, Emura S, Kageyama H, Tatsumi K, Kamiyama T (2005) Investigation on lithium de-intercalation mechanism for Li1−yNi1/3Mn1/3Co1/3O2. J Power Sources 146:640–644

    Google Scholar 

  81. Tsai YW, Hwang BJ, Ceder G, Sheu HS, Liu DG, Lee JF (2005) In-situ x-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling. Chem Mater 17:3193–3199

    Google Scholar 

  82. Kim MG, Shin HJ, Kim J-H, Park S-H, Sun Y-K (2005) XAS investigation of inhomogeneous metal-oxygen bond covalency in bulk and surface for charge compensation in Li-ion battery cathode Li[Ni1/3Co1/3Mn1/3]O2 material. J Electrochem Soc 152:A1320–A1328

    Google Scholar 

  83. Yoon W-S, Balasubramanian M, Chung KY, Yang X-Q, McBreen J, Grey CP, Fischer DA (2005) Electrochemical Li-ion deintercalated Li1−xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard x-ray absorption spectroscopy. J Am Chem Soc 127:17479–17487

    Google Scholar 

  84. Choi J, Manthiram A (2005) Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes. J Electrochem Soc 152:A1714–A1718

    Google Scholar 

  85. Belharouak I, Lu W, Vissers D, Amine K (2006) Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochem Commun 8:329–335

    Google Scholar 

  86. Ngala JK, Chernova NA, Ma M, Mamak M, Zavalij PY, Whittingham MS (2004) The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound. J Mater Chem 14:214–220

    Google Scholar 

  87. Xiao J, Chernova NA, Whittingham MS (2008) Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries. Chem Mater 20:7454–7464

    Google Scholar 

  88. Chernova NA, Ma M, Xiao J, Whittingham MS, Breger J, Grey CP (2007) Layered LixNiyMnyCo1−2yO2 cathodes for lithium ion batteries: understanding local structure via magnetic properties. Chem Mater 19:4682–4693

    Google Scholar 

  89. Liu D, Wang Z, Chen L (2006) Comparison of structure and electrochemistry of Al- and Fe-doped LiNi1/3Co1/3Mn1/3O2. Electrochim Acta 51:4199–4203

    Google Scholar 

  90. Hu S-K, Chou T-C, Hwang B-J, Ceder G (2006) Effect of Co content on performance of LiAl1/3−xCoxNi1/3Mn1/3O2. J Power Sources 160:1287–1293

    Google Scholar 

  91. Zhou F, Zhao X, Lu Z, Jiang J, Dahn JR (2008) The effect of Al substitution on the reactivity of delithiated LiNi1/3Mn1/3Co(1/3−z)AlzO2 with non-aqueous electrolyte. Electrochem Commun 10:1054–1057

    Google Scholar 

  92. Wilcox J, Patoux S, Doeff M (2009) Structure and electrochemistry of LiNi1/3Co1/3−yMyMn1/3O2 (M = Ti, Al, Fe) positive electrode materials. J Electrochem Soc 156:A192–A198

    Google Scholar 

  93. Wilcox JD, Rodriguez EE, Doeff MM (2009) The impact of aluminum and iron substitution on the structure and electrochemistry of Li(Ni0.4Co0.2−yMyMn0.4)O2. J Electrochem Soc 156:A1011–A1018

    Google Scholar 

  94. Xiao J, Chernova NA, Whittingham MS (2010) Influence of manganese content on the performance of LiNi0.9−yMnyCo0.1O2 (0.45≤y≤0.60) as a cathode material for li-ion batteries. Chem Mater 22:1180–1185

    Google Scholar 

  95. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3135

    Google Scholar 

  96. Johnson CS, Li N, Lifief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3 \( \bullet \)(1−x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50°C. Electrochem Commun 9:787–795

    Google Scholar 

  97. Hunter JC (1981) Preparation of a new crystal form of manganese dioxide: λ-MnO2. J Sol State Chem 32:142–147

    Google Scholar 

  98. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mat Res Bull 18:461–472

    Google Scholar 

  99. Goodenough JB, Thackeray MM, David WIF, Bruce PG (1984) Lithium insertion/extraction reactions with manganese oxides. Rev Chim Miner 21:435–455

    Google Scholar 

  100. Thackeray MM (1999) Spinel electrodes for lithium batteries. J Am Ceram Soc 82:337–3354

    Google Scholar 

  101. Tarascon JM, Wang E, Shokoohi FK, McKinnon WR, Colson S (1991) The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J Electrochem Soc 138:2859–2864

    Google Scholar 

  102. Tarascon JM, McKinnon WR, Coowar F, Bowmer TN, Amatucci G, Guyomard D (1994) Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4. J Electrochem Soc 141:1421–1431

    Google Scholar 

  103. Guyomard D, Tarascon JM (1994) The carbon/Li1+xMn2O4 system. Sol State Ionics 69:222–237

    Google Scholar 

  104. Xia Y, Zhou Y, Yoshio M (1997) Capacity fading on cycling of 4 V Li/LiMn2O4 cells. J Electrochem Soc 144:2593–2600

    Google Scholar 

  105. Amatucci G, Tarascon J-M (2002) Optimization of insertion compounds such as LiMn2O4 for li-ion batteries. J Electrochem Soc 149:K31–K46

    Google Scholar 

  106. Gummow RJ, de Kock A, Thackeray MM (1994) Improved capacity retention in rechargeable 4 V lithium/lithium manganese oxide (spinel) cells. Sol State Ionics 69:59–67

    Google Scholar 

  107. Shaju KM, Subba Rao GV, Chowdari BVR (2002) Spinel phases, LiM1/6Mn11/6O4 (M=Co, CoAl, CoCr, CrAl), as cathodes for lithium-ion batteries. Sol State Ionics 148:343–350

    Google Scholar 

  108. Tucker MC, Reimer JA, Cairns EJ (2002) A 7Li NMR study of capacity fade in metal-substituted lithium manganese oxide spinels. J Electrochem Soc 149:A574–A585

    Google Scholar 

  109. Grush MM, Horne CR, Perera RCC, Ederer DL, Cramer SP, Cairns EJ, Callcott TA (2000) Correlating electronic structure with cycling performance of substituted LiMn2O4 electrode materials: a study using the techniques of soft x-ray absorption and emission. Chem Mater 12:659–664

    Google Scholar 

  110. Myung S-T, Komaba S, Kumagai N (2001) Enhanced structural stability and cyclability of Al-doped LiMn2O4 spinel synthesized by the emulsion drying method. J Electrochem Soc 148:A482–A489

    Google Scholar 

  111. Ariyoshi K, Iwata E, Kuniyoshi M, Wakabayashi H, Ohzuku T (2006) Lithium aluminum manganese oxide having spinel framework structure for long-life lithium-ion batteries. Electrochem Sol State Lett 9:A557–A560

    Google Scholar 

  112. Amatucci GG, Pereira N, Zheng T, Tarascon J-M (2001) Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2−xO4−zFz solid solution. J Electrochem Soc 148:A171–A182

    Google Scholar 

  113. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Google Scholar 

  114. Thackeray MM, de Kock A, Rossouw MH, Liles D, Bittihn R, Hoge D (1992) Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications. J Electrochem Soc 139:363–366

    Google Scholar 

  115. Kim J, Manthiram A (1998) Low temperature synthesis and electrode properties of Li4Mn5O12. J Electrochem Soc 145:L53–L55

    Google Scholar 

  116. Pasquier Du, Blyr A, Courjal P, Larcher D, Amatucci G, Gérand B, Tarascon J-M (1999) Mechanism for limited 55°C storage performance of Li1.05Mn1.95O4 electrodes. J Electrochem Soc 146:428–436

    Google Scholar 

  117. Wen SJ, Richardson TJ, Ma L, Striebel KA, Ross PN, Cairns EJ (1996) FTIR spectroscopy of metal oxide insertion electrodes. J Electrochem Soc 143:L136–L138

    Google Scholar 

  118. Eriksson T, Gustafsson T, Thomas JO (2002) Surface structure of LiMn2O4 electrodes. Electrochem Sol State Lett 5:A35–A38

    Google Scholar 

  119. Akimoto J, Takahashi Y, Kijima N (2005) Direct observation of the bulk degradation of Li1.1Mn1.9O4 single crystals after high-temperature storage. Electrochem Sol State Lett 8:A361–A364

    Google Scholar 

  120. Kobayashi H, Sakaebe H, Komoto K, Kageyama H, Tabuchi M, Tatsumi K, Kohigashi T, Yonemura M, Kanno R, Kamiyama T (2003) Structure and physical property changes of de-lithiated spinels for Li1.02−xMn1.98O4 after high-temperature storage. Sol State Ionics 156:309–318

    Google Scholar 

  121. Quinlan FT, Sano K, Willey T, Vidu R, Tasaki K, Stroeve P (2001) Surface characterization of the spinel LixMn2O4 cathode before and after storage at elevated temperatures. Chem Mater 13:4207–4212

    Google Scholar 

  122. Tsunekawa H, Tanimoto S, Marubayashi R, Fujita M, Kifune K, Sano M (2002) Capacity fading of graphite electrodes due to the deposition of manganese ions on them in Li-ion batteries. J Electrochem Soc 149:A1326–A1331

    Google Scholar 

  123. Amine K, Liu J, Kang S, Belharouak I, Hyung Y, Vissers D, Henriksen G (2004) Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. J Power Sources 129:14–19

    Google Scholar 

  124. Cho J, Kim GB, Lim HS, Kim C-S, Yoo S-I (1999) Improvement of structural stability of LiMn2O4 cathode material on 55°C cycling by sol-gel coating of LiCoO2. Electrochem Sol State Lett 2:607–609

    Google Scholar 

  125. Wang EI (1998) Method of treating lithium manganese oxide spinel. US Patent 5,783,328

    Google Scholar 

  126. Xu W, Angell CA (2001) LiBOB and its derivatives weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem Sol State Lett 4:E1–E4

    Google Scholar 

  127. Xu K, Zhang S, Jow TR, Xu W, Angell CA (2002) LiBOB as salt for lithium-ion batteries a possible solution for high temperature operation. Electrochem Solid State Lett 5(1):A26–A29

    Google Scholar 

  128. Chen Z, Amine K (2006) Capacity fade of Li1+xMn2−xO4-based lithium-ion cells. J Electrochem Soc 153:A316–A320

    Google Scholar 

  129. Kitao H, Fujihara T, Takeda K, Nakanishi N, Nohma T (2005) High-temperature storage performance of Li-ion batteries using a mixture of Li-Mn spinel and Li-Ni-Co-Mn oxide as a positive electrode material. Electrochem Sol State Lett 8:A87–A90

    Google Scholar 

  130. MacNeil DD, Dahn JR (2001) The reaction of charged cathodes with nonaqueous solvents and electrolytes II. LiMn2O4 charged to 4.2 V. J Electrochem Soc 148:A1211–A1215

    Google Scholar 

  131. Thackeray MM (1995) Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J Electrochem Soc 142:2558–2563

    Google Scholar 

  132. Sigala C, Guyomard D, Verbaere A, Piffard Y, Tournoux M (1995) Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2−yO4 (0 ≤ y ≤ 1). Sol State Ionics 81:167–170

    Google Scholar 

  133. Kawai H, Nagata M, Tabuchi M, Tukamoto H, West AR (1998) Novel 5V spinel cathode Li2FeMn3O8 for lithium ion batteries. Chem Mater 10:3266–3268

    Google Scholar 

  134. Ein-Eli Y, Howard WF (1997) LiCu llx Cu llly Mn lll, lV[2−(x+y)] O4: 5V cathode materials. J Electrochem Soc 144:L205–L207

    Google Scholar 

  135. Kawai H, Nagata M, Tukamoto H, West AR (1998) A novel cathode Li2CoMn3O8 for lithium ion batteries operating over 5V. J Mater Chem 8:837–839

    Google Scholar 

  136. Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn JR (1997) Synthesis and electrochemistry of LiNixMn2−xO4. J Electrochem Soc 144:205–213

    Google Scholar 

  137. Ohzuku T, Takeda S, Iwanaga M (1999) Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J Power Sources 81–82:90–94

    Google Scholar 

  138. Sun Y-K, Lee Y-S, Yoshio M, Amine K (2002) Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5V cathode material for lithium secondary batteries. Electrochem Sol State Lett 5:A99–A102

    Google Scholar 

  139. Liu J, Manthiram A (2009) Kinetics study of the 5V spinel cathode LiMn1.5Ni0.5O4 before and after surface modifications. J Electrochem Soc 156:A833–A838

    Google Scholar 

  140. Patoux S, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S, Martinet S (2009) High voltage spinel oxides for Li-ion batteries: from the materials research to the application. J Power Sources 189:344–352

    Google Scholar 

  141. Kim J-H, Myung S-T, Yoon CS, Oh I-H, Sun Y-K (2004) Effect of Ti substitution of LiNi0.5Mn1.5−xTixO4 and their electrochemical properties as lithium insertion material. J Electrochem Soc 151:A1911–A1918

    Google Scholar 

  142. Arunkumar TA, Manthiram A (2005) Influence of lattice parameter differences on the electrochemical performance of the 5V spinel LiMn1.5−yNi0.5−zMy+zO4 (M=Li, Mg, Fe, Co, and Zn). Electrochem Sol State Lett 8:A403–A405

    Google Scholar 

  143. Ooms FGB, Kelder EM, Schoonman J, Wagemaker M, Mulder FM (2002) High-voltage LiMgδNi0.5−δMn1.5O4 spinels for Li-ion batteries. Sol State Ionics 152–153:143–153

    Google Scholar 

  144. Gryffoy D, Vandenberghe RE, Legrand E (1991) A neutron diffraction study of some spinel compounds containing octahedral Ni and Mn at a 1:3 ratio. Mater Sci Forum 79–82:785–790

    Google Scholar 

  145. Takahashi K, Saitoh M, Sano M, Fujita M, Kifune K (2004) Electrochemical and structural properties of a 4.7V-class LiNi0.5Mn1.5O4 positive electrode material prepared with a self-reaction method. J Electrochem Soc 151:A173–A177

    Google Scholar 

  146. Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153:A1345–A1352

    Google Scholar 

  147. Wu HM, Belharouak I, Deng H, Abouimrane A, Sun Y-K, Amine K (2009) Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life. J Electrochem Soc 156:A1047–A1050

    Google Scholar 

  148. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Google Scholar 

  149. Andersson AS, Kalska B, Häggstrom L, Thomas JO (2000) Lithium extraction/insertion in LiFePO4: an x-ray diffraction and Mössbauer spectroscopy study. Sol State Ionics 130:41–52

    Google Scholar 

  150. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–376

    Google Scholar 

  151. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98:503–507

    Google Scholar 

  152. Barker J, Saidi MY, Swoyer JL (2003) A carbothermal reduction method for the preparation of electroactive materials for lithium ion applications. J Electrochem Soc 150:A684–A688

    Google Scholar 

  153. Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sources 163:180–184

    Google Scholar 

  154. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc 152:A607–A610

    Google Scholar 

  155. Huang H, Yin S-C, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Sol State Lett 4:A170–A172

    Google Scholar 

  156. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Sol State Lett 6:A207–A209

    Google Scholar 

  157. Zaghib K, Shim J, Guerfi A, Charest P, Striebel KA (2005) Effect of carbon source as additives in LiFePO4 as positive electrode for li-ion batteries. Electrochem Sol State Lett 8:A207–A210

    Google Scholar 

  158. Wilcox JD, Doeff MM, Marcinek M, Kostecki R (2007) Factors influencing the quality of carbon coatings on LiFePO4. J Electrochem Soc 154:A389–A395

    Google Scholar 

  159. Doeff MM, Wilcox JD, Yu R, Aumentado A, Marcinek M, Kostecki R (2008) Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites. J Sol State Electrochem 12:995–1001

    Google Scholar 

  160. Chen Z, Dahn JR (2002) Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J Electrochem Soc 149:A1184–A1189

    Google Scholar 

  161. Chung S-Y, Bloking JT, Chiang Y-M (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Google Scholar 

  162. Thackeray MM (2002) An unexpected conductor. Nat Mater 1:81–82

    Google Scholar 

  163. Ravet N, Abouimrane A, Armand M (2003) From our readers. Nat Mater 2:702–703

    Google Scholar 

  164. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152

    Google Scholar 

  165. Delacourt C, Wurm C, Laffont L, Leriche J-B, Masquelier C (2006) Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites. Sol State Ionics 177:333–341

    Google Scholar 

  166. Rho Y-H, Nazar LF, Perry L, Ryan D (2007) Surface chemistry of LiFePO4 studied by Mössbauer and x-ray photoelectron spectroscopy and its effect on electrochemical properties. J Electrochem Soc 154:A283–A289

    Google Scholar 

  167. Wagemaker M, Ellis BL, Lützenkirchen-Hecht D, Mulder FM, Nazar LF (2008) Proof of supervalent doping in olivine LiFePO4. Chem Mater 20:6313–6315

    Google Scholar 

  168. Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17:5085–5092

    Google Scholar 

  169. Maier J, Amin R (2008) Defect chemistry of LiFePO4. J Electrochem Soc 155:A339–A344

    Google Scholar 

  170. Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron G, Julien CM (2009) Nonstoichiometric LiFePO4: defects and related properties. Chem Mater 21:1636–1644

    Google Scholar 

  171. Amin R, Maier J (2008) Effect of annealing on transport properties of LiFePO4: towards a defect chemical model. Sol State Ionics 178:1831–1836

    Google Scholar 

  172. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem and Sol State Lett 7:A30–A32

    Google Scholar 

  173. Li J, Yao W, Martin S, Vaknin D (2008) Lithium ion conductivity in single crystal LiFePO4. Sol State Ionics 179:2016–2019

    Google Scholar 

  174. Amin R, Maier J, Balaya P, Chen DP, Lin CT (2008) Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Sol State Ionics 179:1683–1687

    Google Scholar 

  175. Gardiner GR, Islam MS (2010) Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material. Chem Mater 22:1242–1248

    Google Scholar 

  176. Chen J, Vacchio MJ, Wang S, Chernova N, Zavalij PY, Whittingham MS (2008) The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Sol State Ionics 178:1676–1693

    Google Scholar 

  177. Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Size effects on carbon-free LiFePO4 powders the key to superior energy density. Electrochem Sol State Lett 9:A352–A355

    Google Scholar 

  178. Meethong N, Huang H-YS, Carter WC, Chiang Y-M (2007) Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4. Electrochem Sol State Lett 10:A134–A138

    Google Scholar 

  179. Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon J-M, Masquelier C (2008) Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat Mater 7:741–747

    Google Scholar 

  180. Yamada A, Koizumi H, Sonoyama N, Kanno R (2005) Phase change in LixFePO4. Electrochem Sol State Lett 8:A409–A413

    Google Scholar 

  181. Yamada A, Koizumi H, Nishimura S-I, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y (2006) Room-temperature miscibility gap in LixFePO4. Nat Mater 5:357–360

    Google Scholar 

  182. Hamelet S, Gibot P, Casas-Cabanas M, Bonnin D, Grey CP, Cabana J, Leriche J-B, Rodriguez-Carvajal CM, Levasseur S, Carlach P, Van Thournout M, Tarascon J-M, Masquelier C (2009) The effects of moderate thermal treatments under air on LiFePO4-based nano powders. J Mater Chem 19:3979–3991

    Google Scholar 

  183. Yu DYW, Donoue K, Kadohata T, Murata T, Matsuta S, Fujitani S (2008) Impurities in LiFePO4 and their influence on material characteristics. J Electrochem Soc 155:A526–A530

    Google Scholar 

  184. Dokko K, Shiraishi K, Kanamura K (2005) Identification of surface impurities on LiFePO4 particles prepared by a hydrothermal process. J Electrochem Soc 152:A2199–A2202

    Google Scholar 

  185. Delacourt C, Poizot P, Tarascon J-M, Masquelier C (2005) The existence of a temperature-driven solid solution in LixFePO4 for 0≤x≤1. Nat Mater 4:254–260

    Google Scholar 

  186. Dodd JL, Yazami R, Fultz B (2006) Phase diagram of LixFePO4. Electrochem Sol State Lett 9:A151–A155

    Google Scholar 

  187. Chen G, Song X, Richardson TJ (2007) Metastable solid-solution phases in the LiFePO4/FePO4 system. J Electrochem Soc 154:A627–A632

    Google Scholar 

  188. Srinivasan V, Newman J (2004) Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc 151:A1517–A1529

    Google Scholar 

  189. Chen G, Song X, Richardson TJ (2006) Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem Sol State Lett 9:A295–A298

    Google Scholar 

  190. Andersson AS, Thomas JO (2001) The source of first cycle capacity loss in LiFePO4. J Power Sources 97–98:498–502

    Google Scholar 

  191. Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P, Masquelier C, Tarascon JM (2006) Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 18:5520–5529

    Google Scholar 

  192. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F (2008) Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat Mater 7:665–671

    Google Scholar 

  193. Allen JL, Jow TR, Wolfenstine J (2007) Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition. Chem Mater 19:2108–2111

    Google Scholar 

  194. Lee KT, Kan WH, Nazar LF (2009) Proof of intercrystallite ionic transport in LiMPO4 electrodes (M=Fe, Mn). J Am Chem Soc 131:6044–6045

    Google Scholar 

  195. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

    Google Scholar 

  196. Amine K, Liu J, Belharouak I (2005) High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochem Commun 7:669–673

    Google Scholar 

  197. Koltypin M, Aurbach D, Nazar L, Ellis B (2007) On the stability of LiFePO4 olivine cathodes under various conditions (electrolyte solutions, temperatures). Electrochem Solid-State Lett 10:A40–A44

    Google Scholar 

  198. Yang S, Song Y, Zavalij PY, Whittingham MS (2002) Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem Commun 4:239–244

    Google Scholar 

  199. Li G, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Sol State Lett 5:A135–A137

    Google Scholar 

  200. Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrochemical conductivity in lithium orthophosphates. Mater Sci Eng B 98:185–189

    Google Scholar 

  201. Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche J-B, Morcrette M, Tarascon J-M, Masquelier C (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M=Fe, Mn) electrode materials. J Electrochem Soc 152:A913–A921

    Google Scholar 

  202. Delacourt C, Poizot P, Morcrette M, Tarascon J-M, Masquelier C (2004) One step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99

    Google Scholar 

  203. Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M=Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route. J Electrochem Soc 153:A716–A723

    Google Scholar 

  204. Kwon N-H, Drezen T, Exnar I, Teerlinck I, Isono M, Graetzel M (2006) Enhanced electrochemical performance of mesoparticulate LiMnPO4 for lithium ion batteries. Electrochem and Solid State Lett 9:A277–A280

    Google Scholar 

  205. Kim TR, Kim DH, Ryu HW, Moon JH, Lee JH, Boo S, Kim J (2007) Synthesis of lithium manganese phosphate nanoparticle and its properties. J Phys Chem Sol 68:1203–1206

    Google Scholar 

  206. Bakenov Z, Taniguchi I (2010) Electrochemical performance of nanocomposite LiMnPO4/C cathode materials for lithium batteries. Electrochemistry Commun 12:75–78

    Google Scholar 

  207. Xiao J, Xu W, Choi D, Zhang J-G (2010) Synthesis and characterization of lithium manganese phosphate by a precipitation method. J Electrochem Soc 157:A142–A147

    Google Scholar 

  208. Doeff MM, Chen J, Conry TE, Wang R, Wilcox J, Aumentado A (2010) Combustion synthesis of nanoparticulate LiMgxMn1−xPO4 (x = 0, 0.1, 0.2) carbon composites. J Mater Res 25:1460–1468

    Google Scholar 

  209. Drezen T, Kwon N-H, Bowen P, Terrlinck I, Isono M, Exnar I (2007) Effect of particle size on LiMnPO4 cathodes. J Power Sources 174:949–953

    Google Scholar 

  210. Chen G, Wilcox JD, Richardson TJ (2008) Improving the performance of lithium manganese phosphate through divalent cation substitution. Electrochem Sol State Lett 11:A190–A194

    Google Scholar 

  211. Shiratsuchi T, Okada S, Doi T, Yamaki J-I (2009) Cathodic performance of LiMn1−xMxPO4 (M = Ti, Mg, and Zr) annealed in an inert atmosphere. Electrochim Acta 54:3145–3151

    Google Scholar 

  212. Bakenov Z, Taniguchi I (2010) LiMgxMn1−xPO4/C cathodes for lithium batteries prepared by a combination of spray pyrolysis with wet ballmilling. J Electrochem Soc 157:A430–A436

    Google Scholar 

  213. Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552

    Google Scholar 

  214. Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R (2004) Comparative kinetic study of olivine LixMPO4 (M=Fe, Mn). J Electrochem Soc 151:A1352–A1356

    Google Scholar 

  215. Yamada A, Chung S-C (2001) Crystal chemistry of the olivine-type Li(MnyFe1−y)PO4 and (MnyFe1−y)PO4 as possible 4 V cathode materials for lithium batteries. J Electrochem Soc 148:A960–A967

    Google Scholar 

  216. Chen G, Richardson TJ (2009) Solid solution phases in the olivine-type LiMnPO4/MnPO4 system. J Electrochem Soc 156:A756–A762

    Google Scholar 

  217. Kim S-W, Kim J, Gwon H, Kang K (2009) Phase stability study of Li1-xMnPO4 (0 ≤ x ≤ 1) cathode for Li rechargeable battery. J Electrochem Soc 156:A635–A638

    Google Scholar 

  218. Chen G, Richardson TJ (2010) Thermal instability of olivine-type LiMnPO4 cathodes. J Power Sources 195:1221–1224

    Google Scholar 

  219. Okada S, Sawa S, Egashira M, Yamaki J-I, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97–98:430–432

    Google Scholar 

  220. Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sources 136:150–153

    Google Scholar 

  221. Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) High potential positive materials for lithium-ion batteries: transition metal phosphates. J Phys Chem Sol 65:229–233

    Google Scholar 

  222. Chang X-Y, Wang Z-X, Li X-H, Zhang L, Guo H-J, Peng W-J (2005) Synthesis and performance of LiMn0.7Fe0.3PO4 cathode material for lithium ion batteries. Mater Res Bull 40:1513–1520

    Google Scholar 

  223. Yamada A, Kudo Y, Liu K-Y (2001) Phase diagram of Lix(MnyFe1−y)PO4 (0 ≤ x, y ≤ 1). J Electrochem Soc 148:A1153–A1158

    Google Scholar 

  224. Bramnik NN, Bramnik KG, Nikolowski K, Hinterstein M, Baehtz C, Ehrenbert H (2005) Synchrotron diffraction study of lithium extraction from LiMn0.6Fe0.4PO4. Electrochem Sol State Lett 8:A379–A381

    Google Scholar 

  225. Park Y-U, Kim J, Gwon H, Seo D-H, Kim S-W, Kang K (2010) Synthesis of multicomponent olivine by a novel mixed transition metal oxalate coprecipitation method and electrochemical characterization. Chem Mater 22:2573–2581

    Google Scholar 

  226. Gwon H, Seo D-H, Kim S-W, Kim J, Kang K (2009) Combined first-principle calculations and experimental study on multi-component olivine cathode for lithium rechargeable batteries. Adv Funct Mater 19:1–8

    Google Scholar 

  227. Seo D-H, Gwon H, Kim S-W, Kim J, Kang K (2010) Multicomponent olivine cathode for lithium rechargeable batteries: a first-principles study. Chem Mater 22:518–523

    Google Scholar 

  228. Goodenough JB, Hong Y-P, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mater Res Bull 11:203–220

    Google Scholar 

  229. Delmas C, Nadiri A (1988) The Nasicon-type titanium phosphates ATi2(PO4)3 (A=Li, Na) as electrode materials. Sol State Ionics 28–30:419–423

    Google Scholar 

  230. Delmas C, Cherkaoui F, Nadiri A, Hagenmuller P (1987) A Nasicon-type phase as intercalation electrode: NaTi2(PO4)3. Mat Res Bull 22:631–639

    Google Scholar 

  231. Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3 frameworks. J Power Sources 26:403–408

    Google Scholar 

  232. Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Sol State Ionics 92:1–10

    Google Scholar 

  233. Masquelier C, Padhi AK, Nanjundaswamy KS, Goodenough JB (1998) New cathode materials for rechargeable lithium batteries: the 3-D framework structures Li3Fe2(XO4)3 (X=P, As). J Sol State Chem 135:228–234

    Google Scholar 

  234. Saïdi MY, Barker J, Huang H, Swoyer JL, Adamson G (2002) Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Sol State Lett 5:A149–A151

    Google Scholar 

  235. Morcrette M, Leriche J-B, Patoux S, Wurm C, Masquelier C (2003) In situ x-ray diffraction during lithium extraction from rhombohedral and monoclinic Li3V2(PO4)3. Electrochem Sol State Lett 6:A80–A84

    Google Scholar 

  236. Yin S-C, Strobel PS, Grondey H, Nazar LF (2004) Li2.5V2(PO4)3: a room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3. Chem Mater 16:1456–1465

    Google Scholar 

  237. Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL, Barker J (2006) LiVPO4F: A new active material for safe lithium-ion batteries. Sol State Ionics 177:2635–2638

    Google Scholar 

  238. Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. J Power Sources 146:516–520

    Google Scholar 

  239. Barker J, Gover RKB, Burns P, Bryan A (2005) A symmetrical lithium-ion cell based on lithium vanadium fluorophosphate, LiVPO4F. Electrochem Sol State Lett 8:A285–A287

    Google Scholar 

  240. Gover RKB, Bryan A, Burns P, Barker J (2006) The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Sol State Ionics 177:1495–1500

    Google Scholar 

  241. Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2007) A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 6:749–753

    Google Scholar 

  242. Ramesh TN, Lee KT, Ellis BL, Nazar LF (2010) Tavorite lithium iron fluorophosphate cathode materials: phase transition and electrochemistry of LiFePO4F–Li2FePO4F. Electrochem Sol State Lett 13:A43–A47

    Google Scholar 

  243. Recham N, Chotard J-N, Jumas J-C, Laffont L, Armand M, Tarascon J-M (2010) Ionothermal synthesis of Li-based fluorophosphates electrodes. Chem Mater 22:1142–1148

    Google Scholar 

  244. Song Y, Zavalij PY, Chernova NA, Whittingham MS (2005) Synthesis, crystal structure, and electrochemical and magnetic study of new iron (III) hydroxyl-phosphates, isostructural with lipscombite. Chem Mater 17:1139–1147

    Google Scholar 

  245. Marx N, Croguennec L, Carlier D, Bourgeois L, Kubiak P, Le Cras F, Delmas C (2010) Structural and electrochemical study of a new crystalline hydrated iron(III) phosphate FePO4⋅H2O obtained from LiFePO4(OH) by ion exchange. Chem Mater 22:1854–1861

    Google Scholar 

  246. Gaubicher J, Le Mercier T, Chabre Y, Angenault J, Quarton M (1999) Li/β-VOPO4: a new 4V system for lithium batteries. J Electrochem Soc 146:4375–4379

    Google Scholar 

  247. Kerr TA, Gaubicher J, Nazar LF (2000) Highly reversible Li insertion at 4V in ε-VOPO4/α-LiVPO4 cathodes. Electrochem Sol State Lett 3:460–462

    Google Scholar 

  248. Song Y, Zavalij PY, Whittingham MS (2005) ε-VOPO4: electrochemical synthesis and enhanced cathode behavior. J Electrochem Soc 152:A721–A727

    Google Scholar 

  249. Barker J, Gover RKB, Burns P, Bryan A (2005) LiVP2O7: a viable lithium-ion cathode material? Electrochem Sol State Lett 8:A446–A448

    Google Scholar 

  250. Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160

    Google Scholar 

  251. Dominko R, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik J (2006) Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem Commun 8:217–222

    Google Scholar 

  252. Gong ZL, Li YX, Yang Y (2006) Synthesis and characterization of Li2MnxFe1−xSiO4 as a cathode material for lithium ion batteries. Electrochem Sol State Lett 9:A542–A544

    Google Scholar 

  253. Belharouak I, Abouimrane A, Amine K (2009) Structural and electrochemical characterization of Li2MnSiO4 cathode material. J Phys Chem C 113:20733–20737

    Google Scholar 

  254. Lyness C, Delobel B, Armstrong AR, Bruce PG (2007) The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries. J Chem Soc Chem Commun 46:4890–4892

    Google Scholar 

  255. Armstrong AR, Lyness C, Ménétrier M, Bruce PG (2010) Structural polymorphism in Li2CoSiO4 intercalation electrodes: a combined diffraction and NMR study. Chem Mater 22:1892–1900

    Google Scholar 

  256. Dominko R (2010) Silicates and titanates as high-energy cathode materials for Li-ion batteries. In: Proceedings of SPIE: energy harvesting and storage: materials, devices and applications II, Orlando

    Google Scholar 

  257. Zaghib K, Salah AA, Ravet N, Mauger A, Gendron F, Julien CM (2006) Structural, magnetic and electrochemical properties of lithium iron orthosilicate. J Power Sources 160:1381–1386

    Google Scholar 

  258. Nishimura S-I, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A (2008) Structure of Li2FeSiO4. J Am Chem Soc 130:13212–13213

    Google Scholar 

  259. Arroyo-de Dompablo ME, Armand M, Tarascon JM, Amador U (2006) On-demand design of polyoxianionic cathode materials based of electronegativity correlations: an exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni). Electrochem Commun 8:1292–1298

    Google Scholar 

  260. Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151:A1878–A1885

    Google Scholar 

  261. Bervas M, Mansour AN, Yoon W-S, Al-Sharab JF, Badway F, Cosandey F, Klein LC, Amatucci GG (2006) Investigation of the lithiation and delithiation conversion mechanisms of bismuth fluoride nanocomposites. J Electrochem Soc 153:A799–A808

    Google Scholar 

  262. Aurbach D (2000) Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89:206–218

    Google Scholar 

  263. Jaiswal A, Horne CR, Chang O, Zhang W, Kong W, Wang E, Chern T, Doeff MM (2009) Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries. J Electrochem Soc 156:A1041–A1046

    Google Scholar 

  264. Ren Y, Armstrong AR, Jiao F, Bruce PG (2010) Influence of size on the rate of mesoporous electrodes for lithium batteries. J Am Chem Soc 132:996–1004

    Google Scholar 

  265. Sun Y-K, Myung S-T, Park B-C, Prakash J, Belharouak I, Amine K (2009) High energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–324

    Google Scholar 

Books and Reviews

  • Ammundsen B, Paulsen J (2001) Novel lithium-ion cathode materials based on layered manganese oxides. Adv Mater 13:943–956

    Google Scholar 

  • Brodd RJ, Bullock KR, Leising RA, Middaugh RL, Miller JR, Takeuchi E (2004) Batteries, 1977 to 2002. J Electrochem Soc 151:K1–K11

    Google Scholar 

  • Bruce PG (2008) Energy storage beyond the horizon: rechargeable lithium batteries. Solid State Ionics 179:752–760

    Google Scholar 

  • Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li batteries. Chem Mater 22:691–714

    Google Scholar 

  • Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Google Scholar 

  • Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Google Scholar 

  • Huggins RA (2009) Advanced batteries, materials sciences aspects. Springer, New York

    Google Scholar 

  • Nazri GA, Pistoia O (eds) (2003) Lithium batteries: science and technology. Kluwer, Norwell

    Google Scholar 

  • Ohzuku T, Brodd RJ (2007) An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 174:449–456

    Google Scholar 

  • Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev 38:2565–2575

    Google Scholar 

  • Tarascon J-M (2010) Key challenges in future Li-battery research. Phil Trans R Soc Lond A 368:3227–3241

    Google Scholar 

  • Yamada A, Hosoya M, Chung S-C, Kudo Y, Hinokuma K, Liu K-Y, Nishi Y (2003) Olivine-type cathodes achievements and problems. J Power Sources 119–121:232–238

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under Contract No. DE-AC02-05CH11231. The author would like to thank Dr. Kinson Kam, Dr. Jordi Cabana, and Mr. Thomas Conry for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marca M. Doeff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doeff, M.M. (2013). Battery Cathodes. In: Brodd, R. (eds) Batteries for Sustainability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5791-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5791-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5790-9

  • Online ISBN: 978-1-4614-5791-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics