Skip to main content

Olivine Phosphate Cathode Materials, Reactivity and Reaction Mechanisms

  • Chapter
  • First Online:
Batteries for Sustainability
  • 3980 Accesses

Abstract

Crystalline size has tremendous effect to the thermodynamics and kinetics in intercalation compounds. This includes diffusion/transport length, effective surface area for exchange current, surface energy, and interphase energy. The focus now is on Li x FePO4, where the phase changes by simple two-phase separation but with controllable miscible character by raising temperature and/or reducing crystalline size, thereby provides simple model system to rationalize thermodynamics and electrochemistry in electrode reaction. Systematic experimental results on this issue are reviewed and summarized. Negative aspects of nanoparticle including surface poisoning by air contact and its diagnosis will be also demonstrated. As an atomic-scale phenomenon, experimental verification of one-dimensional lithium diffusion in Li x FePO4 will be also demonstrated.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cathode:

Oxidizing agent in Battery.

Diffusion:

Spontaneous movement of some species (ions in the present case).

LiFePO4 :

A promising low-cost and safe cathode materials for LIB.

Lithium-ion battery (LIB):

A rechargeable battery with highest energy density.

Miscibility gap:

A compositional region where two species cannot mix.

Olivine:

A name of mineral Mg2SiO4 with identical structure of LiFePO4.

Phase diagram:

Stable phase map as a function of composition, temperature.

Bibliography

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188

    Article  Google Scholar 

  2. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224

    Article  Google Scholar 

  3. Huang H, Yin S-C, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett 4:A170

    Article  Google Scholar 

  4. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  Google Scholar 

  5. Chen Z, Dahn JR (2002) J Electrochem Soc 149:A1184

    Article  Google Scholar 

  6. Goňi A, Lezama L, Arriortua MI, Barberis GE, Rojo T (2000) J Mater Chem 10:423

    Article  Google Scholar 

  7. Dahn JR, McKinnon WR (1985) Phys Rev B32:3003

    Google Scholar 

  8. Dahn JR, McKinnon WR, Murray JJ, Haering RR, McMillan RS, Rivers-Bowerman AH (1985) Phys Rev B32:3316

    Google Scholar 

  9. Delmas C, Nadiri A, Soubeyroux JL (1988) Solid State Ionics 28–30:419

    Article  Google Scholar 

  10. Yamada A, Koizumi H, Sonoyama N, Kanno R (2005) Phase change in Li x FePO4. Electrochem Solid State Lett 8:A409

    Article  Google Scholar 

  11. Meethong N, Huang H-YS, Carter WC, Chiang Y-M (2007) Size-dependent lithium miscibility gap in nanoscale Li1-x FePO4. Electrochem Solid State Lett 10:A134

    Article  Google Scholar 

  12. Wagemaker M, Borghols WJH, Mulder FM (2007) J Am Chem Soc 129:4323

    Article  Google Scholar 

  13. Schimmel HG, Huot J, Chapon LC, Tichelaar FD, Mulder FM (2005) J Am Chem Soc 127:14348

    Article  Google Scholar 

  14. Gibot P, Casa-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S, Tarascon JM, Masquelier C (2008) Nat Mater 7:741

    Article  Google Scholar 

  15. Wagemaker M, Mulder FM, Van der Ven A (2009) Adv Mater 25:2703

    Article  Google Scholar 

  16. Meethong N, Huang H-YS, Speakman SA, Carter WC, Chiang Y-M (2007) Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv Func Mater 17:1115

    Article  Google Scholar 

  17. Wang L, Zhou F, Meng YS, Ceder G (2007) Phys Rev B 76:165435

    Article  Google Scholar 

  18. Martin JF, Yamada A, Kobayashi G, Nishimura S, Kanno R, Guyomard D, Dupre N (2008) Electrochem Solid State Lett 11:A12

    Article  Google Scholar 

  19. Kobayashi G, Nishimura S, Park M-S, Kanno R, Yashima M, Ida T, Yamada A (2009) Adv Func Mater 19:395

    Article  Google Scholar 

  20. Yamada A, Koizumi H, Nishimura S, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y (2006) Room-temperature miscibility gap in LixFePO4. Nat Mater 5:357

    Article  Google Scholar 

  21. Streltsov VA, Belokoneva EL, Tsirelson VG, Hansen NK (1993) Acta Crystallogr B49:147

    Google Scholar 

  22. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in Lix MPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid State Lett 7:A30

    Article  Google Scholar 

  23. Islam M, Driscoll D, Fisher C, Slater P (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17:5085

    Article  Google Scholar 

  24. Delacourt C, Poizot P, Tarascon JM, Masquelier C (2005) The existence of a temperature-driven solid solution in Li x FePO4 for 0<x<1. Nat Mater 4:254

    Article  Google Scholar 

  25. Dodd J, Yazami R, Fultz B (2006) Phase diagram of Li x FePO4. Electrochem Solid State Lett 9:A151

    Article  Google Scholar 

  26. Ellis B, Perry LK, Ryan DH, Nazar LF (2006) Small polaron hopping in Li x FePO4 solid solutions: coupled lithium-ion and electron mobility. J Am Chem Soc 128:11416

    Article  Google Scholar 

  27. Dodd J, Halevy I, Fultz B (2007) Valence fluctuations of 57Fe in disordered Li0.6FePO4. J Phys Chem C 111:1563

    Article  Google Scholar 

  28. Gull SF, Daniel GJ (1978) Image reconstruction from incomplete and noisy data. Nature 272:686

    Article  Google Scholar 

  29. Collins DM (1982) Electron density images from imperfect data by iterative entropy maximization. Nature 298:49

    Article  Google Scholar 

  30. Shikanai F (2006) Neutron powder diffraction study on the high-temperature phase of K3H(SeO4)2. Physica B 385–386:156

    Article  Google Scholar 

  31. Yashima M, Itoh M, Inaguma Y, Morii Y (2005) Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc 127:3491

    Article  Google Scholar 

  32. Yashima M (2003) Conduction path and disorder in the fast oxide-ion conductor (La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O2.8. Chem Phys Lett 380:391

    Article  Google Scholar 

  33. Nishimura S, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A (2008) Experimental visualization of lithium diffusion in LixFePO4. Nat Mater 7(9):707–711

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuo Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamada, A. (2013). Olivine Phosphate Cathode Materials, Reactivity and Reaction Mechanisms. In: Brodd, R. (eds) Batteries for Sustainability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5791-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5791-6_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5790-9

  • Online ISBN: 978-1-4614-5791-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics