Nickel-Based Battery Systems

Chapter

Abstract

Nickel batteries are rechargeable batteries that are used in a variety of applications including portable electronic devices, electric and hybrid vehicles, aeronautics and aerospace and stationary energy storage among others. They operate over a wide temperature range, have a flat discharge curve and are available in sizes ranging from small coin cells to motive power batteries. Nickel batteries are physically and electrically rugged and abuse tolerant including over charge and overdischarge.

Keywords

Zinc Graphite Hydroxide Cobalt Manganese 

Glossary

β-β Transformation

The reaction of β-Ni(OH)2 on charge to form β-NiOOH.

α-γ Transformation

The reaction of α-Ni(OH)2 on charge to form γ-NiOOH.

Ah Ampere hour

3,600 coulombs, the quantity of current flow in 1 ampere in 1 h.

Charge reserve

Additional capacity of the negative or positive electrode to prevent gas evolution when the cell is overcharged or overdischarged.

Electrolyte

Electrical conducting liquid flow where charge is carried by positive and negative ions.

Flame-arresting vent

A cell vent designed to stop burning discharge from a vent.

Ni-MH

Nickel metal hydride cell containing a nickel hydroxide positive and a hydrogen-absorbing metal alloy negative electrode.

Plate

Electrode construction containing the active material and a current collector.

Pocket plate electrodes

Perforated nickel-plated steel pockets that contain the active materials in a cell with free access of electrolyte.

Self-discharge

Loss of capacity due to the chemical instability or a reaction of an active material in an electrode with the electrolyte.

Tubular plate electrodes

Perforated nickel-plated steel tubes used to contain the active material in a cell.

Misch metal

Containing a mixture of hydrogen-absorbing transition metals, Mm.

Nickel cadmium fiber plate

Batteries construction of the positive nickel battery plate that contains nickel metal fibers throughout the plate for more efficient current collection.

Sinter plate cells

Sealed battery cells using a nickel current collector structure usually produced by heating to a temperature where powdered nickel metal particles bond together to form a porous structure sinter current collector.

Trickle charging

The low-level current flow to maintain full charge in a battery.

Terminal

The external connection to the positive and negative electrodes containing the active material inside the battery case.

WH

Watt hour, energy content of a battery expressed as the product of ampere-hours times cell voltage.

Zircar

Trademark of nonwoven ceramic separator used in some Ni-MH cells.

Bibliography

  1. 1.
    Anderman M, Baker C, Cohen F (1997) Proceedings of the 32nd intersociety energy conversion conference, Honolulu, Hawaii, vol 1, p 97465 Honolulu, HawaiiGoogle Scholar
  2. 2.
    Anderson B, Ojefors L (1979) In: Thompson JF (ed) Power sources, vol 7. Academic, London, p 329Google Scholar
  3. 3.
    Baker C, Barekatien M (2000) Proceedings of the SAE power systems conference, San Diego, 2000Google Scholar
  4. 4.
    Beauchamp RL (1971) US Patent 3,573,101Google Scholar
  5. 5.
    Beauchamp RL (1972) US Patent 2,653,967Google Scholar
  6. 6.
    Beccu K (1972) US Patent 3,669,745Google Scholar
  7. 7.
    Buzzelli E (1978) Silver-iron battery performance characteristics. In: Proceedings of the 28th power sources symposium, Electrochemical Society, Pennington, p 160Google Scholar
  8. 8.
    (2004) Cadnica sealed type Nickel-Cadmium batteries engineering handbook, Sanyo Electric Company, OsakaGoogle Scholar
  9. 9.
    Casellato U, Comisso N, Mengoli G (2006) Effects of Li ions on reduction of Fe oxides in aqueous alkaline medium. Electrochemica Acta 51:5669–5681CrossRefGoogle Scholar
  10. 10.
    Cook J (1999) Separator-hidden talent Electric and hybrid vehicle technologyGoogle Scholar
  11. 11.
    Corrigan DA, Venkatesan S, Gifford P, Holland A, Fetcenko MA, Dhar SK, Ovshinsky SR (1997) Proceedings of the 14th international electric vehicle symposium, OrlandoGoogle Scholar
  12. 12.
    Corrigan DA, Knight SK (1996) J Electrochem Soc 143(5):1613Google Scholar
  13. 13.
    Ettel V, Ambrose J, Cushnie K, Bell JAE, Paserin V, Kalal PJ (1997) US Patent 5,700,363Google Scholar
  14. 14.
    Falk SU, Salkind AJ (1969) Alkaline storage batteries. Wiley, New YorkGoogle Scholar
  15. 15.
    Feduska W, Rosy R (1980) An advanced technology Iron-Nickel battery for electric vehicle propulsion. In: Proceedings of the 15th IECEC, Seattle, p 1192Google Scholar
  16. 16.
    Fetcenko MA, Ovshinsky SR, Chao B, Reichman B (1996) US Patent 5,536,591Google Scholar
  17. 17.
    Fetchenko MA, Venkatesan S, Ovshinsky S (1991) Proceedings of the symposium on hydrogen storage materials, batteries and electrochemistry, Electrochemical Society, Pennington, p 141Google Scholar
  18. 18.
    Fleischer A (1948) J Electrochem Soc 94:289CrossRefGoogle Scholar
  19. 19.
    Ford FE (1994) Handbook for handling and storage of Nickel-Cadmium batteries: lessons learned, NASA Ref. Publ. 1326Google Scholar
  20. 20.
    Gutjahr MA, Buchner H, Beccu KD, Saufferer H (1973) In: Collins DH (ed) Power sources, vol 4. Oriel, Newcastle Upon Tyne, p 79Google Scholar
  21. 21.
    Halpert G (1984) J Power Sources 12:117CrossRefGoogle Scholar
  22. 22.
    Halpert G (1990) Proceedings of the symposium on nickel hydroxide electrodes, The Electrochemical Society, Hollywood, Oct 1989, J Electrochem Soc, Pennington, pp 3–17Google Scholar
  23. 23.
    Hill TE, Rosy R, Vaill RE (1978) Performance characteristics of iron nickel batteries. In: Proceedings of the 28th power sources symposium, Electrochemical Society, Pennington, p 149Google Scholar
  24. 24.
    Hudson R, Broglio E (1980) Development of nickel-iron battery system for electric vehicle propulsion. In: Proceedings of the 29th power sources conference, Electrochemical Society, PenningtonGoogle Scholar
  25. 25.
    Ishiwa K, Ito T, Miyamoto K, Takano K, Suzuki S (1999) Evolution and extension of NiMH technology. In: 16th international seminar on primary and secondary batteries, Ft. LauderdaleGoogle Scholar
  26. 26.
    Kanagawa I (1998) 15th international seminar on primary and secondary batteries, Ft. LauderdaleGoogle Scholar
  27. 27.
    Kruger FJ (1998) 15th international seminar on primary and secondary batteries, Ft. LauderdaleGoogle Scholar
  28. 28.
    Kulin TM (1998) 33rd intersociety engineering conference on energy conversion, ICECE-98-145, Colorado Springs, 2–6 Aug 1998Google Scholar
  29. 29.
    Reddy TB (2011) Linden’s handbook of batteries, 4th edn. McGraw Hill, New YorkGoogle Scholar
  30. 30.
    Lindstrom O (1975) In: Collins DH (ed) Power sources, vol 5. Academic, London, p 283Google Scholar
  31. 31.
    McBreen J (1990) The nickel oxide electrode. In: White RE, Bockris JO’M, Conway BE (eds) Modern aspect of electrochemistry, vol 21. Plenum, New York, p 29Google Scholar
  32. 32.
    McRae B, Nary D (1998) Proceedings of the 38th power sources conference, pp 123–126Google Scholar
  33. 33.
    Matsumoto I, Ogawa H, Iwaki T, Ikeyama M (1988) 16th international power sources symposium, 1988, Bournmouth, EnglandGoogle Scholar
  34. 34.
    Mil-B-81757 (1984) Performance specifications, batteries and cells, storage, nickel cadmium, Aircraft General Specification, Crane Division, NSWC, 1 July 1984Google Scholar
  35. 35.
    Mishima R, Miyamura H, Sakai T, Kuriyama N, Ishikawa H, Uehara I (1993) J Alloys Compd 192:176–178CrossRefGoogle Scholar
  36. 36.
    Notten PHL, Hokkeling P (1991) J Electrochem Soc 138(7):1877CrossRefGoogle Scholar
  37. 37.
    Notten PHL, Daams JLC, Einerhand REF (1992) Ber Bunsenges Phys Chem 96:5CrossRefGoogle Scholar
  38. 38.
    Nickel-Cadmium batteries (2004) charge system guide, Panasonic Industrial Company, SecaucusGoogle Scholar
  39. 39.
    Ohta K, Matsuda H, Ikoma M, Morishita N, Toyoguchi Y (1996) US Patent 5,571,636Google Scholar
  40. 40.
    Ojefors L, Carlson L (1977) An iron-air vehicle battery. J Power Sources 2:287CrossRefGoogle Scholar
  41. 41.
    Oshitani M, Yufu H, Takashima K, Tsuji S, Matsumaru Y (1989) J Electrochem Soc 136:6CrossRefGoogle Scholar
  42. 42.
    Oshitani M, Yufu H (1989) US Patent 4,844,999Google Scholar
  43. 43.
    Ovshinsky SR, Dhar SK, Fetcenko MA, Young K, Reichman B, Fierro C, Koch J, Martin F, Mays W, Sommers B, Ouchi T, Zallen A, Young R (2000) 17th international seminar and exhibit on primary and secondary batteries, Ft. Lauderdale, 6–9 Mar 2000Google Scholar
  44. 44.
    Ovshinsky SR (1998) Materials research society fall meeting, BostonGoogle Scholar
  45. 45.
    Ovshinsky SR, Fetcenko M, Ross J (1993) Science 260:176CrossRefGoogle Scholar
  46. 46.
    Ovshinsky SR (1991) In: Adler D, Schwartz B, Silver M (eds) Disordered materials: science and technology. Institute for Amorphous Studies Series/Plenum Publishing Corporation, New YorkGoogle Scholar
  47. 47.
    Ovshinsky SR, Corrigan DA, Venkatesan S, Young R, Fierro C, Fetcenko M (1994) US Patent 5,348,822, 14 Apr 1994Google Scholar
  48. 48.
    Pell MB, Blossom RW (1970) US Patent 3,507,699Google Scholar
  49. 49.
    Picket DF, Maloy JT (1978) J Electrochem Soc 12:1026CrossRefGoogle Scholar
  50. 50.
    Picket DF (1974) US Patent 3,827,911Google Scholar
  51. 51.
    Picket DF (1975) US Patent 3,873,368Google Scholar
  52. 52.
    Puglisi V (2000) 17th international seminar and exhibit on primary and secondary batteries, Ft. Lauderdale 6–9 Mar 2000Google Scholar
  53. 53.
    Reichman B, Mays W, Fetcenko MA, Ovshinsky SR (1999) Electrochemical society proceedings, vol 97–16, Oct 1999Google Scholar
  54. 54.
    Salkind AJ, Venuto CJ, Falk SU (1964) The reaction at the iron alkaline electrode. J Electrochem Soc 111:493CrossRefGoogle Scholar
  55. 55.
    Sapru SR, Reichman B, Reger A, Ovshinsky SR (1986) US Patent 4,623,597Google Scholar
  56. 56.
    Singh D, Wu T, Wendling M, Bendale P, Ware J, Ritter D, Zhang L (1998) Mater Res Soc Proc 496:25–36CrossRefGoogle Scholar
  57. 57.
    Souza A, Carlos IA, Lopes M, Finazzi GA, de Almeida MRH (2004) Self-discharge of Fe-Ni alkaline batteries. J Power Sources 132:288–290CrossRefGoogle Scholar
  58. 58.
    Stempel RC, Ovshinsky WR, Gifford PR, Corrigan DA (1998) IEEC spectrum 35(11):29–34Google Scholar
  59. 59.
    Takagi S, Minohara T (2000) Society of automotive engineers, 2000-01-1060, Mar 2000Google Scholar
  60. 60.
    Tuomi D (1976) The forming process in nickel positive electrodes. J Electrochem Soc 123:1691CrossRefGoogle Scholar
  61. 61.
    van Beek JR, Donkersloot HC, Willems JJG (1984) Proceedings of the 14th international power sources symposium (1984), Waikola, HawaiiGoogle Scholar
  62. 62.
    Watanabe K, Koseki M, Kumagai N (1996) J Power Sources 58:23–28CrossRefGoogle Scholar
  63. 63.
    Weininger JL (1982) In: Gunther RG, Gross S (eds) The nickel electrode, vol 82–84. Electrochemical Society, Pennington, pp 1–19Google Scholar
  64. 64.
    Weizhong T, Guangfei S (1994) J Alloy Compd 203:195–198CrossRefGoogle Scholar
  65. 65.
    Young K, Fetcenko MA, Reichman B, Mays W, Ovshinsky SR (2000) Proceedings of the 197th electrochemical society meeting, May 2000Google Scholar
  66. 66.
    Yu X, Licht S (2007) Advances in Fe(VI) charge storage part I, primary alkaline super-iron batteries. J Power Sources 171:966–980CrossRefGoogle Scholar
  67. 67.
    Yu X, Licht S (2007) Advances in Fe(VI) charge storage part ii, reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J Power Sources 171:1010–1022CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Broddarp of NevadaHendersonUSA

Personalised recommendations