Skip to main content

Membrane Electrolytes, from Perfluoro Sulfonic Acid (PFSA) to Hydrocarbon Ionomers

  • Chapter
  • First Online:
Fuel Cells

Abstract

Proton exchange membranes (PEMs) are one of the key materials in low-temperature fuel cells; proton exchange membrane fuel cells (PEMFCs); and direct 35 methanol fuel cells (DMFCs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Hydrocarbon ionomers:

Polymers with hydrocarbon backbone (and generally no fluorine groups) and acidic functions.

Hydrophilic/hydrophobic phase separation:

Phase-separated morphology of ionomer membranes based on the differences in the hydrophilicity (and hydrophobicity) of the components.

Ion exchange capacity:

Amount of acidic or ion-exchangeable sites per weight or volume unit of ionomer membranes, often abbreviated as IEC. EW (equivalent weight, or weight of ionomer membranes per acidic or ion-exchangeable site) is a reciprocal of IEC.

Ionomers:

Originally defined as copolymers having one ionic group per polymer repeating unit, where composition of ion-containing copolymer unit is less than 20%. Nowadays, often used to be synonymous with polymer electrolytes.

Ionic channels:

Network of acidic groups and water molecules, through which proton and/or hydronium ions can migrate.

Perfluoro sulfonic acid ionomers:

Copolymers composed of poly(tetrafluoroethylene) and poly(trifluoroethylene) with perfluoro sulfonic acid ether side chains.

Proton exchange membranes:

Membranes that can exchange protons with other cations or that can transport protons.

Bibliography

Primary Literature

  1. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/

  2. Arenz M, Schmidt TJ, Wandelt K, Ross PN, Markovic NM (2003) The oxygen reduction reaction on thin palladium films supported on a Pt(111) electrode. J Phys Chem B 107:9813–9819

    Article  Google Scholar 

  3. Aieta NV, Stanis RJ, Horan JL, Yandrasits MA, Cookson DJ, Ingham B, Toney MF, Hamrock SJ, Herring AM (2009) Clipped random wave morphologies and the analysis of the SAXS of an ionomer formed by copolymerization of tetrafluoroethylene and CF2 = CFO(CF2)4SO3H. Macromolecules 42:5774–5780

    Article  Google Scholar 

  4. Emery M, Frey M, Guerra M, Haugen G, Hintzer K, Lochhaas KH, Pham P, Pierpont D, Schaberg M, Thaler A, Yandrasits M, Hamrock S (2007) The development of new membranes for proton exchange membrane fuel cells. ECS Trans 11:3–14

    Article  Google Scholar 

  5. Arcella V, Troglia C, Ghielmi A (2005) Hyflon ion membranes for fuel cells. Ind Eng Chem Res 44:7646–7651

    Article  Google Scholar 

  6. Kreuer KD, Schuster M, Obliers B, Diat O, Traub U, Fuchs A, Klock U, Paddison SJ, Maier J (2008) Short-side-chain proton conducting perfluorosulfonic acid ionomers: why they perform better in PEM fuel cells. J Power Sources 178:499–509

    Article  Google Scholar 

  7. Yoshitake M, Watakabe A (2008) Perfluorinated ionic polymers for PEFCs (including supported PFSA). Adv Polym Sci, Fuel Cells I 215:127–155

    Google Scholar 

  8. Appleby AJ, Velev OA, LeHelloco JG, Parthasarthy A, Srinivasan S, DesMarteau DD, Gillette MS, Ghosh JK (1993) Polymeric perfluoro bis-sulfonimides as possible fuel cell electrolytes. J Electrochem Soc 140:109–111

    Article  Google Scholar 

  9. Kotov SV, Pedersen SD, Qiu W, Qiu Z-M, Burton DJ (1997) Preparation of perfluorocarbon polymers containing phosphonic acid groups. J Fluorine Chem 82:13–19

    Article  Google Scholar 

  10. Thomas BH, DesMarteau DD (2005) Self-emulsifying polymerization (SEP) of 3, 6-dioxa-Delta 7–4-trifluoromethyl perfluorooctyl trifluoromethyl sulfonimide with tetrafluoroethylene. J Fluorine Chem 126:1057–1064

    Article  Google Scholar 

  11. Thomas BH, Shafer G, Ma JJ, Tu M-H, DesMarteau DD (2004) Synthesis of 3, 6-dioxa-Delta 7–4-trifluoromethyl perfluorooctyl trifluoromethyl sulfonimide: bis[(perfluoroalkyl)sulfonyl] superacid monomer and polymer. J Fluorine Chem 125:1231–1240

    Article  Google Scholar 

  12. Uematsu N, Hoshi N, Koga T, Ikeda M (2006) Synthesis of novel perfluorosulfonamide monomers and their application. J Fluorine Chem 127:1087–1095

    Article  Google Scholar 

  13. Coms FD (2008) The chemistry of fuel cell membrane chemical degradation. ECS Trans 16:235–255

    Article  Google Scholar 

  14. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME (2004) Advanced materials for improved PEMFC performance and life. J Power Sources 131:41–48

    Article  Google Scholar 

  15. Schiraldi DA (2006) Perfluorinated polymer electrolyte membrane durability. Polym Rev 46:315–327

    Google Scholar 

  16. Danilczuk M, Perkowski AJ, Schlick S (2010) Ranking the stability of perfluorinated membranes used in fuel cells to attack by hydroxyl radicals and the effect of Ce(III): a competitive kinetics approach based on spin trapping ESR. Macromolecules 43:3352–3358

    Article  Google Scholar 

  17. Endoh E (2008) Development of highly durable PFSA membrane and MEA for PEMFC under high temperature and low humidity conditions. ECS Trans 16:1229–1240

    Article  Google Scholar 

  18. Ghassemzadeh L, Kreuer KD, Maier J, Muller K (2010) Chemical degradation of nation membranes under mimic fuel cell conditions as investigated by solid-state NMR spectroscopy. J Phys Chem C 114:14635–14645

    Article  Google Scholar 

  19. Coms FD, Liu H, Owejan JE (2008) Mitigation of perfluorosulfonic acid membrane chemical degradation using cerium and manganese ions. ECS Trans 16:1735–1747

    Article  Google Scholar 

  20. Danilczuk M, Schlick S, Coms FD (2009) Cerium(III) as a stabilizer of perfluorinated membranes used in fuel cells: in situ detection of early events in the ESR resonator. Macromolecules 42:8943–8949

    Article  Google Scholar 

  21. Trogadas P, Parrondo J, Ramani V (2008) Degradation mitigation in polymer electrolyte membranes using cerium oxide as a regenerative free-radical scavenger. Electrochem Solid-State Lett 11:B113–B116

    Article  Google Scholar 

  22. Okazoe T, Murotani E, Watanabe K, Itoh M, Shirakawa D, Kawahara K, Kaneko I, Tatematsu S (2004) An entirely new methodology for synthesizing perfluorinated compounds: synthesis of perfluoroalkanesulfonyl fluorides from non-fluorinated compounds. J Fluorine Chem 125:1695–1701

    Article  Google Scholar 

  23. Goto K, Rozhanskii I, Yamakawa Y, Otsuki T, Naito Y (2008) Development of aromatic polymer electrolyte membrane with high conductivity and durability for fuel cell. Polym J 41:95–104

    Article  Google Scholar 

  24. Bae JM, Honma I, Murata M, Yamamoto T, Rikukawa M, Ogata N (2002) Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells. Solid State Ionics 147:189–194

    Article  Google Scholar 

  25. Kobayashi T, Rikukawa M, Sanui K, Ogata N (1998) Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1, 4-phenylene). Solid State Ionics 106:219–225

    Article  Google Scholar 

  26. Yanagimachi S, Kaneko K, Takeoka Y, Rikukawa M (2003) Synthesis and evaluation of phosphonated poly(4-phenoxybenzoyl-1, 4-phenylene). Synth Met 135:69–70

    Article  Google Scholar 

  27. Ghassemi H, McGrath JE (2004) Synthesis and properties of new sulfonated poly(p-phenylene) derivatives for proton exchange membranes. I. Polymer 45:5847–5854

    Article  Google Scholar 

  28. Ghassemi H, Ndip G, McGrath JE (2004) New multiblock copolymers of sulfonated poly(4′-phenyl-2, 5-benzophenone) and poly(arylene ether sulfone) for proton exchange membranes. II. Polymer 45:5855–5862

    Article  Google Scholar 

  29. Fujimoto CH, Hickner MA, Cornelius CJ, Loy DA (2005) Ionomeric poly(phenylene) prepared by Diels-Alder polymerization: synthesis and physical properties of a novel polyelectrolyte. Macromolecules 38:5010–5016

    Article  Google Scholar 

  30. He L, Fujimoto CH, Cornelius CJ, Perahia D (2009) From solutions to membranes: structure studies of sulfonated polyphenylene ionomers. Macromolecules 42:7084–7090

    Article  Google Scholar 

  31. Hickner MA, Fujimoto CH, Cornelius CJ (2006) Transport in sulfonated poly(phenylene)s: proton conductivity, permeability, and the state of water. Polymer 47:4238–4244

    Article  Google Scholar 

  32. Stanis RJ, Yaklin MA, Cornelius CJ, Takatera T, Umemoto A, Ambrosini A, Fujimoto CH (2010) Evaluation of hydrogen and methanol fuel cell performance of sulfonated diels alder poly(phenylene) membranes. J Power Sources 195:104–110

    Article  Google Scholar 

  33. Rager T, Schuster M, Steininger H, Kreuer K-D (2007) Poly(1, 3-phenylene-5-phosphonic acid), a fully aromatic polyelectrolyte with high ion exchange capacity. Adv Mater 19:3317–3321

    Article  Google Scholar 

  34. Steininger H, Schuster M, Kreuer KD, Kaltbeitzel A, Bingoel B, Meyer WH, Schauff S, Brunklaus G, Maier J, Spiess HW (2007) Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. Phys Chem Chem Phys 9:1764–1773

    Article  Google Scholar 

  35. Schuster M, de Araujo CC, Atanasov V, Andersen HT, Kreuer K-D, Maier J (2009) Highly sulfonated poly(phenylene sulfone): preparation and stability issues. Macromolecules 42:3129–3137

    Article  Google Scholar 

  36. Schuster M, Kreuer K-D, Andersen HT, Maier J (2007) Sulfonated poly(phenylene sulfone) polymers as hydrolytically and thermooxidatively stable proton conducting ionomers. Macromolecules 40:598–607

    Article  Google Scholar 

  37. Kashimura Y, Aoyama S, Kawakami H (2009) Gas transport properties of asymmetric block copolyimide membranes. Polym J 41:961–967

    Article  Google Scholar 

  38. Nakano T, Nagaoka S, Kawakami H (2005) Preparation of novel sulfonated block copolyimides for proton conductivity membranes. Polym Adv Technol 16:753–757

    Article  Google Scholar 

  39. Nakano T, Nagaoka S, Kawakami H (2006) Proton conductivity of sulfonated long-chain-block copolyimide films. Kobunshi Ronbunshu 63:200–204

    Article  Google Scholar 

  40. Niwa M, Nagaoka S, Kawakami H (2006) Preparation of novel fluorinated block copolyimide membranes for gas separation. J Appl Polym Sci 100:2436–2442

    Article  Google Scholar 

  41. Asano N, Miyatake K, Watanabe M (2006) Sulfonated block polyimide copolymers as a proton-conductive membrane. J Polym Sci, A: Polym Chem 44:2744–2748

    Article  Google Scholar 

  42. Badami AS, Lane O, Lee H-S, Roy A, McGrath JE (2009) Fundamental investigations of the effect of the linkage group on the behavior of hydrophilic-hydrophobic poly(arylene ether sulfone) multiblock copolymers for proton exchange membrane fuel cells. J Membr Sci 333:1–11

    Article  Google Scholar 

  43. Badami AS, Roy A, Lee H-S, Li Y, McGrath JE (2009) Morphological investigations of disulfonated poly(arylene ether sulfone)-b-naphthalene dianhydride-based polyimide multiblock copolymers as potential high temperature proton exchange membranes. J Membr Sci 328:156–164

    Article  Google Scholar 

  44. Ghassemi H, McGrath JE, Zawodzinski TA (2006) Multiblock sulfonated-fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell. Polymer 47:4132–4139

    Article  Google Scholar 

  45. Lee H-S, Lane O, McGrath JE (2010) Development of multiblock copolymers with novel hydroquinone-based hydrophilic blocks for proton exchange membrane (PEM) applications. J Power Sources 195:1772–1778

    Article  Google Scholar 

  46. Lee H-S, Roy A, Lane O, Dunn S, McGrath JE (2008) Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells. Polymer 49:715–723

    Article  Google Scholar 

  47. Lee HS, Roy A, Lane O, Lee M, McGrath JE (2010) Synthesis and characterization of multiblock copolymers based on hydrophilic disulfonated poly(arylene ether sulfone) and hydrophobic partially fluorinated poly(arylene ether ketone) for fuel cell applications. J Polym Sci Pol Chem 48:214–222

    Article  Google Scholar 

  48. Lee M, Park JK, Lee H-S, Lane O, Moore RB, McGrath JE, Baird DG (2009) Effects of block length and solution-casting conditions on the final morphology and properties of disulfonated poly(arylene ether sulfone) multiblock copolymer films for proton exchange membranes. Polymer 50:6129–6138

    Article  Google Scholar 

  49. Roy A, Hickner MA, Einsla BR, Harrison WL, McGrath JE (2009) Synthesis and characterization of partially disulfonated hydroquinone-based poly(arylene ether sulfone)s random copolymers for application as proton exchange membranes. J Polym Sci Pol Chem 47:384–391

    Article  Google Scholar 

  50. Roy A, Lee H-S, McGrath JE (2008) Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone)s as novel proton exchange membranes - Part B. Polymer 49:5037–5044

    Article  Google Scholar 

  51. Yu X, Roy A, Dunn S, Yang J, McGrath JE (2006) Synthesis and characterization of sulfonated-fluorinated, hydrophilic-hydrophobic multiblock copolymers for proton exchange membranes. Macromol Symp 245/246:439–449

    Article  Google Scholar 

  52. Matsumura S, Hlil AR, Hay AS (2008) Synthesis, properties, and sulfonation of novel dendritic multiblock copoly(ether-sulfone). J Polym Sci Pol Chem 46:6365–6375

    Article  Google Scholar 

  53. Matsumura S, Hlil AR, Lepiller C, Gaudet J, Guay D, Hay AS (2008) Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups: novel linear aromatic poly(sulfide-ketone)s. Macromolecules 41:277–280

    Article  Google Scholar 

  54. Matsumura S, Hlil AR, Lepiller C, Gaudet J, Guay D, Shi Z, Holdcroft S, Hay AS (2008) Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups: novel branched poly(ether-ketone)s. Macromolecules 41:281–284

    Article  Google Scholar 

  55. Matsumura S, Hlil AR, Al-Souz MAK, Gaudet J, Guay D, Hay AS (2009) Ionomers for proton exchange membrane fuel cells by sulfonation of novel dendritic multiblock copoly(ether-sulfone)s. J Polym Sci Pol Chem 47:5461–5473

    Article  Google Scholar 

  56. Matsumura S, Hlil AR, Du N, Lepiller C, Gaudet J, Guay D, Shi Z, Holdcroft S, Hay AS (2008) Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: novel branched poly(ether-ketone)s with 3, 6-ditrityl-9H-carbazole end-groups. J Polym Sci Pol Chem 46:3860–3868

    Article  Google Scholar 

  57. Tian S, Meng Y, Hay AS (2009) Membranes from poly(aryl ether)-based ionomers containing multiblock segments of randomly distributed nanoclusters of 18 sulfonic acid groups. J Polym Sci Pol Chem 47:4762–4773

    Article  Google Scholar 

  58. Tian S, Meng Y, Hay AS (2009) Membranes from poly(aryl ether)-based ionomers containing randomly distributed nanoclusters of 6 or 12 sulfonic acid groups. Macromolecules 42:1153–1160

    Article  Google Scholar 

  59. Higashihara T, Matsumoto K, Ueda M (2009) Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells. Polymer 50:5341–5357

    Article  Google Scholar 

  60. Matsumoto K, Higashihara T, Ueda M (2009) Locally and densely sulfonated poly(ether sulfone)s as proton exchange membrane. Macromolecules 42:1161–1166

    Article  Google Scholar 

  61. Matsumoto K, Higashihara T, Ueda M (2009) Locally sulfonated poly(ether sulfone)s with highly sulfonated units as proton exchange membrane. J Polym Sci Pol Chem 47:3444–3453

    Article  Google Scholar 

  62. Bae B, Miyatake K, Watanabe M (2009) Synthesis and Properties of Sulfonated Block Copolymers Having Fluorenyl Groups for Fuel-Cell Applications. ACS Appl Mater Interfaces 1:1279–1286

    Article  Google Scholar 

  63. Bae B, Miyatake K, Watanabe M (2010) Sulfonated poly(arylene ether sulfone ketone) multiblock copolymers with highly sulfonated block. Synth Properties Macromol 43:2684–2691

    Google Scholar 

  64. Bae B, Yoda T, Miyatake K, Uchida H, Watanabe M (2010) Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells. Angew Chem Int Ed 49:317–320

    Article  Google Scholar 

  65. Li N, Liu J, Cui Z, Zhang S, Xing W (2009) Novel hydrophilic-hydrophobic multiblock copolyimides as proton exchange membranes: enhancing the proton conductivity. Polymer 50:4505–4511

    Article  Google Scholar 

  66. Liu B, Robertson GP, Kim D-S, Guiver MD, Hu W, Jiang Z (2007) Aromatic poly(ether ketone)s with pendant sulfonic acid phenyl groups prepared by a mild sulfonation method for proton exchange membranes. Macromolecules 40:1934–1944

    Article  Google Scholar 

  67. Liu B, Robertson GP, Kim D-S, Sun X, Jiang Z, Guiver MD (2010) Enhanced thermo-oxidative stability of sulfophenylated poly(ether sulfone)s. Polymer 51:403–413

    Article  Google Scholar 

  68. Pang J, Zhang H, Li X, Jiang Z (2007) Novel wholly aromatic sulfonated poly(arylene ether) copolymers containing sulfonic acid groups on the pendants for proton exchange membrane materials. Macromolecules 40:9435–9442

    Article  Google Scholar 

  69. Pang J, Zhang H, Li X, Liu B, Jiang Z (2008) Poly(arylene ether)s with pendant sulfoalkoxy groups prepared by direct copolymerization method for proton exchange membranes. J Power Sources 184:1–8

    Article  Google Scholar 

  70. Pang J, Zhang H, Li X, Ren D, Jiang Z (2007) Low water swelling and high proton conducting sulfonated poly(arylene ether) with pendant sulfoalkyl groups for proton exchange membranes. Macromol Rapid Commun 28:2332–2338

    Article  Google Scholar 

  71. Pang J, Zhang H, Li X, Wang L, Liu B, Jiang Z (2008) Synthesis and characterization of sulfonated poly(arylene ether)s with sulfoalkyl pendant groups for proton exchange membranes. J Membr Sci 318:271–279

    Article  Google Scholar 

  72. Lee JK, Li W, Manthiram A (2009) Poly(arylene ether sulfone)s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells. J Membr Sci 330:73–79

    Article  Google Scholar 

  73. Lafitte B, Jannasch P (2007) Proton-conducting aromatic polymers carrying hypersulfonated side chains for fuel cell applications. Adv Funct Mater 17:2823–2834

    Article  Google Scholar 

  74. Parvole J, Jannasch P (2008) Poly(arylene ether sulfone)s with phosphonic acid and bis(phosphonic acid) on short alkyl side chains for proton-exchange membranes. J Mater Chem 18:5547–5556

    Article  Google Scholar 

  75. Parvole J, Jannasch P (2008) Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state. Macromolecules 41:3893–3903

    Article  Google Scholar 

  76. Kim DS, Kim YS, Guiver MD, Pivovar BS (2008) High performance nitrile copolymers for polymer electrolyte membrane fuel cells. J Membr Sci 321:199–208

    Article  Google Scholar 

  77. Kim DS, Kim YS, Guiver MD, Ding J, Pivovar BS (2008) Highly fluorinated comb-shaped copolymer as proton exchange membranes (PEMs): fuel cell performance. J Power Sources 182:100–105

    Article  Google Scholar 

  78. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39

    Article  Google Scholar 

  79. Yoshimura K, Iwasaki K (2009) Aromatic polymer with pendant perfluoroalkyl sulfonic acid for fuel cell applications. Macromolecules 42:9302–9306

    Article  Google Scholar 

  80. Mikami T, Miyatake K, Watanabe M (2010) Poly(arylene ether)s containing superacid groups as proton exchange membranes. ACS Appl Mater Interfaces 2:1714–1721

    Article  Google Scholar 

  81. Miyatake K, Shimura T, Mikami T, Watanabe M (2009) Aromatic ionomers with superacid groups. Chem Commun 42:6403–6405

    Article  Google Scholar 

  82. Hirakimoto T, Fukushima K, Li Y, Takizawa S, Hinokuma K, Senoo T (2008) Fullerene-based proton-conductive material for the electrolyte membrane and electrode of a direct methanol fuel cell. ECS Trans 16:2067–2072

    Article  Google Scholar 

  83. Watanabe M, Uchida H, Emori M (1998) Analyses of self-humidification and suppression of gas crossover in Pt-dispersed polymer electrolyte membranes for fuel cells. J Electrochem Soc 145:1137–1141

    Article  Google Scholar 

  84. Watanabe M, Uchida H, Emori M (1998) Polymer electrolyte membranes incorporated with nanometer-size particles of pt and/or metal-oxides: experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells. J Phys Chem B 102:3129–3137

    Article  Google Scholar 

  85. Watanabe M, Uchida H, Seki Y, Emori M, Stonehart P (1996) Self-humidifying polymer electrolyte membranes for fuel cells. J Electrochem Soc 143:3847–3852

    Article  Google Scholar 

  86. Dyck A, Fritsch D, Nunes SP (2002) Proton-conductive membranes of sulfonated polyphenylsulfone. J Appl Polym Sci 86:2820–2827

    Article  Google Scholar 

  87. Gomes D, Buder I, Nunes SP (2006) Sulfonated silica-based electrolyte nanocomposite membranes. J Polym Sci Pol Chem 44:2278–2298

    Google Scholar 

  88. Karthikeyan CS, Nunes SP, Prado LASA, Ponce ML, Silva H, Ruffmann B, Schulte K (2005) Polymer nanocomposite membranes for DMFC application. J Membr Sci 254:139–146

    Article  Google Scholar 

  89. Karthikeyan CS, Nunes SP, Schulte K (2005) Ionomer-silicates composite membranes: permeability and conductivity studies. Eur Polym J 41:1350–1356

    Article  Google Scholar 

  90. Karthikeyan CS, Nunes SP, Schulte K (2006) Permeability and conductivity studies on ionomer-polysilsesquioxane hybrid materials. Macromol Chem Phys 207:336–341

    Article  Google Scholar 

  91. Nunes SP, Ruffmann B, Rikowski E, Vetter S, Richau K (2002) Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. J Membr Sci 203:215–225

    Article  Google Scholar 

  92. Silva VS, Ruffmann B, Silva H, Gallego YA, Mendes A, Madeira LM, Nunes SP (2005) Proton electrolyte membrane properties and direct methanol fuel cell performance. J Power Sources 140:34–40

    Article  Google Scholar 

  93. Silva VS, Schirmer J, Reissner R, Ruffmann B, Silva H, Mendes A, Madeira LM, Nunes SP (2005) Proton electrolyte membrane properties and direct methanol fuel cell performance. J Power Sources 140:41–49

    Article  Google Scholar 

  94. Su Y-H, Liu Y-L, Sun Y-M, Lai J-Y, Guiver MD, Gao Y (2006) Using silica nanoparticles for modifying sulfonated poly(phthalazinone ether ketone) membrane for direct methanol fuel cell: a significant improvement on cell performance. J Power Sources 155:111–117

    Article  Google Scholar 

  95. Su Y-H, Liu Y-L, Sun Y-M, Lai J-Y, Wang D-M, Gao Y, Liu B, Guiver MD (2007) Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. J Membr Sci 296:21–28

    Article  Google Scholar 

  96. Anilkumar GM, Nakazawa S, Okubo T, Yamaguchi T (2006) Proton conducting phosphated zirconia-sulfonated polyether sulfone nanohybrid electrolyte for low humidity, wide-temperature PEMFC operation. Electrochem Commun 8:133–136

    Article  Google Scholar 

  97. Miyatake K, Tombe T, Chikashige Y, Uchida H, Watanabe M (2007) Enhanced proton conduction in polymer electrolyte membranes with acid- functionalized polysilsesquioxane. Angew Chem Int Ed 46:6646–6649

    Article  Google Scholar 

Books and Reviews

  • Colomban P (1992) Proton conductors: solids, membrane and gels – materials and devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612

    Article  Google Scholar 

  • Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637–4678

    Article  Google Scholar 

  • Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25:1463–1502

    Article  Google Scholar 

  • Scherer GG (2008) Advances in polymer science: fuel cells I & II. Springer, Berlin

    Google Scholar 

  • Tant BR, Mauritz KA, Wilkes GL (1997) Ionomers – synthesis, structure, properties and applications. Blackie Academic & Professional, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Miyatake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miyatake, K. (2013). Membrane Electrolytes, from Perfluoro Sulfonic Acid (PFSA) to Hydrocarbon Ionomers. In: Kreuer, KD. (eds) Fuel Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5785-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5785-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5784-8

  • Online ISBN: 978-1-4614-5785-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics