Skip to main content

Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications

  • Chapter
  • First Online:
Book cover Fuel Cells

Abstract

Since the discovery of fuel cells in the nineteenth century, they have been designed for operation with liquid alkaline, acid, and solid oxide ion conducting electrolytes in different temperature ranges to produce electrical power for stationary, portable, and automotive applications. The liquid acid that provides ionic conduction has been replaced by fairly thin proton conducting membranes such as polystyrenes and perfluorosulfonic acids (PFSAs) like Nafion and more recently with hydrocarbon-based polymers. These fuel cells incorporating a proton-conducting membrane rather than liquid electrolyte to separate the anode and cathode (forming a 3-layer sandwich or catalyst coated membrane) are referred to as PEMFCs. PEMFCs are preferred for use in automotives for a multitude of reasons including their high volumetric and gravimetric power density.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Automotive PEMFC:

Proton exchange membrane fuel cell stacks used to power automotive vehicles typically using hydrogen as a fuel and ambient air as the oxidant.

Electrocatalyst:

The material used on the anode and cathode electrodes of fuel cells to catalyze the fuel oxidation and oxygen reduction reactions to produce electrical power and by-products of heat and water. Amount of electrocatalyst used in the anode or cathode of fuel cells is reported in units of mg/cm2.

Membrane/PEM:

The proton conductive polymer electrolyte used to separate the anode and cathode compartments of fuel cells. The membrane replaces the liquid electrolytes used in some fuel cells.

Fuel cell performance:

The voltage produced by a fuel cell stack at a defined current density. A performance or polarization curve refers to a plot of the cell potential (V) versus current density (I) under specified conditions of pressure, temperature, humidity, and reactant stoichiometry.

Fuel cell durability:

A measure of the degradation of components of a fuel cell as well as the output power of the entire stack over time. Also defined in terms of the maximum life of the stack before failure or degradation rate of the fuel cell performance in μV/h.

Bibliography

Primary Literature

  1. Grove WR (1842) On gaseous voltaic battery. Phil Mag 3:417

    Google Scholar 

  2. Schonbein CF (1839) Phil Mag 14:43

    Google Scholar 

  3. Mond L, Langer C (1889) Proc Roy Soc 46:296

    Article  Google Scholar 

  4. Jacques WW (1897) Electricity direct from coal. Harpers Mag 94:144–150

    Google Scholar 

  5. Baur E, Tobler J (1933) Brennstoffketten Z Elektrochem 39:169–180

    Google Scholar 

  6. Schmidt TJ, Paulus UA, Gasteiger HA, Behm RJ (2001) Peroixde rde, anion adsorption effect. J Electroanal Chem 508:41–47

    Article  Google Scholar 

  7. Tobler J (1933) Z Elektrochem 39:148

    Google Scholar 

  8. Nernst W (1904) Z Phys Chem 47:52

    Google Scholar 

  9. Tafel J, Emmert B (1905) Ueber die ursache der spontanen depression des kathodenpotntials bei der eletrolyse verduennter schwefelsaeure. Zeit Phys Chem 50:349–373

    Google Scholar 

  10. Liebhavsky HA, Cairns EJ (1968) Fuel cells and batteries. Wiley, New York

    Google Scholar 

  11. Vielstich W (1965) Fuel cells. Wiley-Interscience, London

    Google Scholar 

  12. Maget HJR (1967) in: Berger C (ed) Handbook of fuel cell technology. Prentice-Hall, Englewood Cliffs, NJ, pp 425–491

    Google Scholar 

  13. Liebhavsky HA, Grubb WT Jr (1961) The fuel cell in space. ARS J 31:1183–1190

    Google Scholar 

  14. AFC A (2003) Alkaline fuel cells. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells-fundamentals, technology and applications. Wiley, New York

    Google Scholar 

  15. Kordesch KV (1978) 25 years of fuel cell development (1951-1976). J Electrochem Soc 125:77 C–91 C

    Google Scholar 

  16. Grubb WTJ (1959) US Patent 2,913,511

    Google Scholar 

  17. Niedrach LW, Alford HR (1965) J Elecrochem Soc 112:117

    Article  Google Scholar 

  18. Thomas CES (2007) Greenhouse gas results. http://www.cleancaroptions.com/html/greenhouse_gas_results.html

  19. DOE US (2010) Well-to-wheels greenhouse gas emissions. http://www.hydrogen.energy.gov/pdfs/9002_well-to-wheels_greenhouse_gas_emissions_petroleum_use.pdf

  20. IPCC (2007) The IPCC assessment reports. http://www.ipcc.ch/

  21. Koppel T (1999) Powering the future: The ballard fuel cell and the race to change the world. Wiley, New York

    Google Scholar 

  22. Taub A (2009) The opportunity in electric transportation. http://www.ncsc.ncsu.edu/cleantransportation/docs/Events/2009_5-27_Taub_GM-EV.pdf

  23. GreenCarCongress: GM highlights engineering advances with second generation fuel cell system and fifth generation stack; poised for production around 2015. http://www.greencarcongress.com/2009/09/gm-2gen-20090928.html

  24. ChevyEquinox (2010) Chevy equinox fuel cell. http://www.gm.com/vehicles/innovation/fuel-cells/

  25. AutoBlogGreen (2010) 2008 chevy equinox fuel cell. http://green.autoblog.com/photos/2008-chevrolet-equinox-fuel-cell/#380179

    Google Scholar 

  26. UTCPower (2010) UTC power: Transportation\automotive. http://www.utcpower.com/fs/com/bin/fs_com_Page/0,11491,0151,00.html

  27. F-cell M-BB-c (2010) 2010 mercedes-benz b-class f-cell. http://www.caranddriver.com/news/car/09q3/2010_mercedes-benz_b-class_f-cell-car_news

  28. FCHV-adv T (2010) Fuel cell technology. http://www2.toyota.co.jp/en/tech/environment/fchv/

  29. Pressroom T (2010) Toyota fuel cell vehicle demonstration program expands. http://pressroom.toyota.com/pr/tms/toyota/toyota-fuel-cell-vehicle-demonstration-151146.aspx

  30. NissanHistory (2010) The history of Nissan's fuel-cell vehicle development. http://www.nissan-global.com/EN/ENVIRONMENT/CAR/FUEL_BATTERY/DEVELOPMENT/FCV/index.html

  31. Honda (2010) Honda: Fuel cell electric vehicle. http://world.honda.com/FuelCell/

  32. Uchimura M, Sugawara S, Suzuki Y, Zhang J, Kocha SS (2008) Electrocatalyst durability under simulated automotive drive cycles. ECS Trans 16:225–234

    Article  Google Scholar 

  33. Kocha SS (2003) Principles of mea preparation. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells-fundamentals, technology and applications. John Wiley & Sons, Ltd., New York, pp 538–565

    Google Scholar 

  34. Kocha SS, Yang DJ, Yi JS (2006) Characterization of gas crossover and its implications in PEM fuel cells. AlChE J 52:1916–1925

    Article  Google Scholar 

  35. Uchimura M, Kocha S (2007) The impact of cycle profile on PEMFC durability. ECS Trans 11:1215–1226

    Article  Google Scholar 

  36. Ohma A, Suga S, Yamamoto S, Shinohara K (2007) Membrane degradation behavior during OCV hold test. J Electrochem Soc 154:B757–B760

    Article  Google Scholar 

  37. Sugawara S, Maruyama T, Nagahara Y, Kocha SS, Shinohara K, Tsujita K, Mitsushima S, Ota K-i (2009) Performance decay of proton-exchange membrane fuel cells under open circuit conditions induced by membrane decomposition. J Power Sources 187:324–331

    Article  Google Scholar 

  38. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for pt, pt-alloy, and non-pt oxygen reduction catalysts for PEMFCS. Appl Catal B Environ 56:9–35

    Article  Google Scholar 

  39. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ, Kocha SS, Miller DP, Mittelsteadt CK, Tao X, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14:24–35

    Google Scholar 

  40. Uchimura M, Kocha SS (2007) The impact of oxides on activity and durability of PEMFCS. AIChE Journal Abstract No. 295b

    Google Scholar 

  41. Uchimura M, Kocha SS (2008) The influence of Pt-oxide coverage on the ORR reaction order in PEMFCs. ECS Meeting, Honolulu, HI 12–17 Oct 2008

    Google Scholar 

  42. Kocha SS, Gasteiger HA (2004) The use of Pt-alloy catalyst for cathodes of PEMFCS to enhance performance and achieve automotive cost targets. Fuel Cell Seminar, San Antonio, TX

    Google Scholar 

  43. Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JD, Perry ML, Jarvi TD (2005) A reverse-current decay mechanism for fuel cells. Electrochem Solid-State Lett 8:A273–A276

    Article  Google Scholar 

  44. Reiser CA, Yang D, Sawyer RD (2005) Procedure for shutting down a fuel cell system using air purge. US Patent 6,858,336, 22 Feb 2005

    Google Scholar 

  45. Reiser CA, Yang DJ, Sawyer RD (2005) Procedure for starting up a fuel cell system using a fuel purge. US Patent 7,410,712, 12 Aug 2008

    Google Scholar 

  46. Shimoi R, Aoyama T, Iiyama A (2009) Development of fuel cell stack durability based on actual vehicle test data: Current status and future work. SAE International 2009-01-1014

    Google Scholar 

  47. Merzougui B, Halalay IC, Carpenter MK, Swathirajan S (2006) Conductive matrices for fuel cell electrodes. General Motors, US Patent Application 20060251954

    Google Scholar 

  48. DOE US (2007) Fuel cell targets. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp

  49. Borup RL, Meyers JP, Pivovar B, Kim YS, Mukundan R, Garland N, Myers DJ, Wilson M, Garzon F, Wood DL, Zelenay P, More K, Stroh K, Zawodizinski TA, Boncella J, McGrath J, Inaba M, Miyatake K, Hori M, Ota K-i, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-i, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  Google Scholar 

  50. Mohtadi R, Lee WK, Zee JWV (2004) So2 contamination. J Power Sources 138:216–225

    Article  Google Scholar 

  51. Nagahara Y, Sugwara S, Shinohara K (2008) The impact of air contaminants on PEMFC performance and durability. J Power Sources 182:422–488

    Article  Google Scholar 

  52. Kocha SS, Gasteiger HA (2004) Platinum alloy catalysts for PEMFCs. Henry B. Gonzalez Convention Center, San Antonio, TX. http://www.fuelcellseminar.com/past-conferences/2004.aspx

  53. Satyapal S (2009) Hydrogen program overview. http://www.hydrogen.energy.gov/pdfs/review09/program_overview_2009_amr.pdf

  54. Satyapal S (2009) Fuel cell project kickoff. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/satyapal_doe_kickoff.pdf

  55. NEDO (2007) Nedo homepage. http://www.nedo.go.jp/nenryo/gijutsu/index.html:

  56. Iiyama A, Shinohara K, Igushi S, Daimaru A (2009) Membrane and catalyst performance targets for automotive fuel cells. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells-advances in electrocatalysis, materials, diagnostics and durability. John Wiley & Sons, Ltd.,

    Google Scholar 

  57. Cleghorn S, Griffith M, Liu W, Pires J, Kolde J (2007) Gore's development path to a commercial automotive membrane electrode assembly. http://www.fuelcellseminar.com/past-conferences/2007.aspx

  58. McGrath J (2007) Advanced materials for proton exchange membranes. DOE Hydrogen Program Merit Review Presentation. http://www.hydrogen.energy.gov/pdfs/review07/fc_23_mcgrath.pdf

  59. Luczak FJ (1976) Determination of d-band occupancy in pure metals and supported catalysts by measurement of the liii x-ray absorption threshold. J Catal 43:376–379

    Article  Google Scholar 

  60. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 142:1409–1422

    Article  Google Scholar 

  61. Nagy Z, You H (2002) Applications of surface x-ray scattering to electrochemistry problems. Electrochim Acta 47:3037–3055

    Article  Google Scholar 

  62. Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130:2299–2302

    Article  Google Scholar 

  63. Myers D (2009) http://www.hydrogen.energy.gov/pdfs/review09/fc_20_myers.pdf

  64. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:494–497

    Article  Google Scholar 

  65. Markovic NM, Ross PN (2000) Electrocatalysts by design: From the tailored surface to a commercial catalyst. Electrochim Acta 45:4101–4115

    Article  Google Scholar 

  66. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  Google Scholar 

  67. Neyerlin KC, Srivastava R, Yu C, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction. J Power Sources 186:261–267

    Article  Google Scholar 

  68. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Pt monolayer on noble metal-noble metal core core-shell nanoparticle electocatalysts for O2 reduction. J Phys Chem B 109:22701–22704

    Article  Google Scholar 

  69. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Pt-Pd core-shell. J Phys Chem B 108:10955

    Article  Google Scholar 

  70. Brankovic SR, Wang JX, Adzic RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179

    Article  Google Scholar 

  71. Zhang J, Sasaki R, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen reduction electrocatalysts using gold clusters. Science 315:220–222

    Article  Google Scholar 

  72. Adzic RR (2010) Contiguous platinum monolayer oxygen reduction electrocatalysts on high-stability-low-cost supports. http://www.hydrogen.energy.gov/pdfs/review10/fc009_adzic_2010_o_web.pdf

  73. Bregoli LJ (1978) The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid. Electrochim Acta 23:489–492

    Article  Google Scholar 

  74. Makharia R, Kocha SS, Yu PT, Sweikart MA, Gu W, Wagner FT, Gasteiger HA (2006) Durable PEMFC electrode materials: Requirements and benchmarking methodologies. ECS Trans 1:3–18

    Article  Google Scholar 

  75. Debe M (2005) Advanced meas for enhanced operating conditions, amenable to high volume manufacture. 2005 DOE Hydrogen Program Review. http://www.hydrogen.energy.gov/pdfs/review05/fc3_debe.pdf

  76. Debe M (2008) Advanced cathode catalysts and supports for pem fuel cells. http://www.hydrogen.energy.gov/pdfs/review08/fc_1_debe.pdf

  77. Pivovar B (2010) Extended, continuous pt nanostructures in thick, dispersed electrodes. http://www.hydrogen.energy.gov/pdfs/review10/fc007_pivovar_2010_o_web.pdf

  78. Conway BE (1995) Electrochemical oxide film formation at noble metals as a surface-chemical process. Prog Surf Sci 49:331–452

    Article  Google Scholar 

  79. Conway BE, Barnett B, Angerstein-Kozlowska H (1990) A surface-electrochemical basis for the direct logarithmic growth law for initial stages of extension of anodic oxide films formed at noble metals. J Chem Phys 93:8361–8373

    Article  Google Scholar 

  80. Conway BE, Jerkiewicz G (1992) Surface orientation dependence of oxide film growth at platinum single crystals. J Electroanal Chem 339:123–146

    Article  Google Scholar 

  81. Bindra P, Clouser SJ, Yeager E (1979) Pt dissolution in concentrated phosphoric acid. J Electrochem Soc 126:1631

    Article  Google Scholar 

  82. Wang X, Kumar R, Myers DJ (2006) Effect of voltage on platinum dissolution relevance to polymer electrolyte fuel cells. Electrochem Solid-State Lett 9:A225–A227

    Article  Google Scholar 

  83. Wang X, Kariuki N, Vaughey JT, Goodpastor J, Kumar R, Myers DJ (2008) Bi-metallic Pd-Cu oxygen reduction electrocatalysts. J Electrochem Soc 155:B602–B609

    Article  Google Scholar 

  84. Jaouen F, Charreteur F, Dodolet JP (2006) C-n4. J Electrochem Soc 153:A689

    Article  Google Scholar 

  85. Medard C, Lefevre M, Dodolet JP, Jaouen F, Lindbergh G (2006) C-n4. Electrochim Acta 51:3202

    Article  Google Scholar 

  86. Lefevre M, Proietti E, Jaouen F, Dodolet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71

    Article  Google Scholar 

  87. Campbell S (2005) Development of transition metal/chalcogen based cathode catalysts for PEM fuel cells. http://www.hydrogen.energy.gov/pdfs/review05/fc13_campbell.pdf

  88. Zelaney P (2009) Advanced cathode catalysts. http://www.hydrogen.energy.gov/pdfs/review09/fc_21_zelenay.pdf

  89. Zelaney P (2010) Advanced cathode catalysts. http://www.hydrogen.energy.gov/pdfs/review10/fc005_zelenay_2010_o_web.pdf

  90. Bett JA, Kinoshita K, Stonehart P (1974) Crystallite growth of Pt dispersed on graphitized carbon black. J Catal 35:307–316

    Article  Google Scholar 

  91. Bett JA, Kinoshita K, Stonehart P (1976) Crystallite growth of Pt dispersed on graphitized carbon black ii effect of liquid environment. J Catal 41:124–133

    Article  Google Scholar 

  92. Cai M, Ruthkosky MS, Merzougui B, Swathirajan S, Balogh MP, Oh SH (2006) Investigation of thermal and electrochemical degradation of fuel cell catalysts. J Power Sources 160:977–986

    Article  Google Scholar 

  93. Kinoshita K (1988) Carbon electrochemical and physicochemical properties. John Wiley & Sons, New York

    Google Scholar 

  94. Yu PT, Gu W, Makharia R, Wagner F, Gasteiger H (2006) The impact of carbon stability on PEM fuel cell start-up and shutdown voltage degradation. ECS 210th Meeting, Abstract 0598.pdf. http://www.electrochem.org/meetings/scheduler/abstracts/210/0598.pdf

  95. Yu PT, Kocha SS, Paine L, Gu W, Wagner FT (2004) The effects of air purge on the degradation of PEMFCS during startup an shutdown procedures. Proc AIChE 2004 Annual Meeting, New Orleans, LA, April 25–29 (2004)

    Google Scholar 

  96. Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) PEM review. Chem Rev 104:4637–4678

    Article  Google Scholar 

  97. Kreuer KD, Schuster M, Obliers B, Diat O, Traub U, Fuchs A, Klock U, Paddison SJ, Maier J (2008) Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells. J Power Sources 178:499–509

    Article  Google Scholar 

  98. Schuster MFH, Meyer WH, Schuster M, Kreuer KD (2004) Toward a new type of anhydrous organic proton conductor based on immobilized imidazole. Chem Mater 16:329–337

    Article  Google Scholar 

  99. Steininger H, Schuster M, Kreuer KD, Kaltbeitzel A, Bingol B, Meyer WH, Schauff S, Brunklaus G, Maier J, Spiess HW (2007) Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: A progress report. Phys Chem Chem Phys 9:1764–1773

    Article  Google Scholar 

  100. Larson JM, Hamrock SJ, Haugen GM, Pham P, Lamanna WM, Moss AB (2007) Membranes based on basic polymers and perfluorinated acids for hotter and drier fuel cell operating conditions. J Power Sources 172:108–114

    Article  Google Scholar 

  101. Meng FQ, Aieta NV, Dec SF, Horan JL, Williamson D, Frey MH, Pham P, Turner JA, Yandrasits MA, Hamrock SJ, Herring AM (2007) Structural and transport effects of doping perfluorosulfonic acid polymers with the heteropoly acids, h3pw12o40 or h4siw12o40. Electrochim Acta 53:1372–1378

    Article  Google Scholar 

  102. Gervasio D (2010) Protic salt polymer membranes. http://www.hydrogen.energy.gov/pdfs/review09/fc_06_gervasio.pdf

  103. de Araujo CC, Kreuer KD, Schuster M, Portale G, Mendil-Jakani H, Gebel G, Maier J (2009) Poly(p-phenylene sulfone)s with high ion exchange capacity: Ionomers with unique microstructural and transport features. Phys Chem Chem Phys 11:3305–3312

    Article  Google Scholar 

  104. Yi J (2007) Development of low-cost, durable membrane and MEA for stationary and mobile fuel cell applications. http://www.hydrogen.energy.gov/pdfs/review07/fc_9_yi.pdf

  105. Pintauro P (2010) Nanocapillary network proton conducting membranes for high temperature hydrogen/air fuel cells. http://www.hydrogen.energy.gov/pdfs/review10/fc038_pintauro_2010_o_web.pdf

  106. Hamrock SJ (2010) Membranes and meas for dry, hot operating conditions. http://www.hydrogen.energy.gov/pdfs/review10/fc034_hamrock_2010_o_web.pdf

  107. Mittelsteadt CK (2010) Dimensionally stable membranes. http://www.hydrogen.energy.gov/pdfs/review10/fc036_mittelsteadt_2010_o_web.pdf

  108. Endoh E (2008) Progress of highly durable mea for PEMFC under high temperature and low humidity conditions. ECS Trans 12:41–50

    Article  Google Scholar 

  109. Endoh E, Terazono S, Widjaja H, Takimoto Y (2004) OCV degradation. Electrochem Solid-State Lett 7:A209–AA211

    Article  Google Scholar 

  110. Varcoe JR, Slade RCT, Yee E (2006) An alkaline polymer electrochemical interface: A breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem Commun 1428–1429

    Google Scholar 

  111. Piana M, Boccia M, Filipi A, Flammia E, Miller HA, Orsini M, Salusti F, Santiccioli S, Ciardelli F, Pucci A (2010) H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-Pt group metal cathode catalyst. J Power Sources 195:5875–5881

    Article  Google Scholar 

  112. Wang H, Turner JA (2010) Reviewing metallic PEMFC bipolar plates. Fuel Cells 10:510–519

    Article  Google Scholar 

  113. Brady MP, Wang H, Turner JA, Meyer HM, More KL, Tortorelli PF, McCarthy BD (2010) Pre-oxidized and nitrided stainless steel alloy foil for proton exchange membrane fuel cell bipolar plates: Part 1. Corrosion, interfacial contact resistance, and surface structure. J Power Sources 195:5610–5618

    Article  Google Scholar 

  114. Dadheech G, Elhamid MHA, Blunk R (2009) Nanostructured and self-assembled superhydrophilic bipolar plate coatings for fuel cell water management. Nanotech Conference & Expo 2009, vol 3, Technical Proceedings pp 18–183

    Google Scholar 

Books and Reviews

  • Alsabet M, Grden M, Jerkiewicz G (2006) Comprehensive study of the growth of thin oxide layers on pt electrodes under well-defined temperature, potential, and time conditions. J Electroanal Chem 589:120–127

    Article  Google Scholar 

  • Bard AJ, Faulkner LR (1980) Electrochemical methods. John Wiley & Sons Inc., New York

    Google Scholar 

  • Bockris JO'M, Reddy AKN (1973) Modern Electrochemistry: An Introduction to an Interdisciplinary Area, Vol 1, Springer

    Google Scholar 

  • Borup RL, Meyers JP, Pivovar B, Kim YS, Mukundan R, Garland N, Myers DJ, Wilson M, Garzon F, Wood DL, Zelenay P, More K, Stroh K, Zawodizinski TA, Boncella J, McGrath J, Inaba M, Miyatake K, Hori M, Ota K-i, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-i, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  Google Scholar 

  • Conway BE (1952) Electrochemical data. Greenwood Press, Westport, CT

    Google Scholar 

  • Conway BE (1964) Theory of principles of electrode processes. Ronald Press, New York

    Google Scholar 

  • Conway BE (1995) Electrochemical oxide film formation at noble metals as a surface-chemical process. Prog Surf Sci 49:331–452

    Article  Google Scholar 

  • Conway BE, Jerkiewicz G (1992) Surface orientation dependence of oxide film growth at platinum single crystals. J Electroanal Chem 339:123–146

    Article  Google Scholar 

  • Gileadi E (1993) Electrode kinetics. VCH, New York

    Google Scholar 

  • Kinoshita K (1988) Carbon electrochemical and physicochemical properties. John Wiley & Sons, New York

    Google Scholar 

  • Kinoshita K (1992) Electrochemical oxygen technology. John Wiley & Sons, New York

    Google Scholar 

  • Kocha SS (2003) Principles of MEA preparation. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells-fundamentals, technology and applications. John Wiley & Sons, Ltd., New York, pp 538–565

    Google Scholar 

  • Kocha SS, Yang DJ, Yi JS (2006) Characterization of gas crossover and its implications in PEM fuel cells. AlChE J 52:1916–1925

    Article  Google Scholar 

  • Koppel T (1999) Powering the future: The ballard fuel cell and the race to change the world. Wiley, New York

    Google Scholar 

  • Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Pem review. Chem Rev 104:4637–4678

    Article  Google Scholar 

  • Liebhavsky HA, Cairns EJ (1968) Fuel cells and batteries. Wiley, New York

    Google Scholar 

  • Markovic NM, Ross PN (2000) Electrocatalysts by design: From the tailored surface to a commercial catalyst. Electrochim Acta 45:4101–4115

    Article  Google Scholar 

  • Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ, Kocha SS, Miller DP, Mittelsteadt CK, Tao X, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14:24–35

    Google Scholar 

  • Mench MM (2008) Fuel cell engines. John Wiley & Sons Inc., Hoboken, NJ

    Book  Google Scholar 

  • Pourbaix M (1966) Atlas of electrochemical equilibrium in aqueous solutions, 1st edn. Pergamon Press, New York

    Google Scholar 

  • Prentice G (1991) Electrochemical engineering principles. Prentice Hall, Englewood, NJ

    Google Scholar 

  • Savadogo O (1998) Emerging membranes for the electrochemical systems: (i) solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst 47–66

    Google Scholar 

  • Vetter KJ (1963) A general thermodynamic theory of the potential of passive electrodes and its influence on passive corrosion. J Electrochem Soc 110:597–605

    Article  Google Scholar 

  • Wilson MS, Gottesfeld S (1992) High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. J Electrochem Soc 139:L28–L30

    Article  Google Scholar 

  • Zawodzinski TA, Derouin CR, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water uptake by and transport through nafion 117 membranes. J Elecrochem Soc 140:1041–1047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Kocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kocha, S.S. (2013). Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications. In: Kreuer, KD. (eds) Fuel Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5785-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5785-5_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5784-8

  • Online ISBN: 978-1-4614-5785-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics