Skip to main content

PEM Fuel Cells and Platinum-Based Electrocatalysts

  • Chapter
  • First Online:
Book cover Fuel Cells

Abstract

H2/air-powered PEM fuel cells are a future substitute for combustion engines as the green power source for transport application. In PEM fuel cells, because of their low operating temperature and low pH, both anode and cathode reactions are catalyzed by Pt or Pt-based electrocatalysts. Pt is a precious and expensive noble metal, and therefore its loading requirement plays a major role in determining the cost of fuel cells in mass production. The anode hydrogen oxidation reaction on Pt is intrinsically fast and requires very little Pt, while the cathode oxygen reduction reaction (ORR) is a very sluggish reaction that consumes about 90% of the total Pt content in PEM fuel cells. The current Pt loading in the most advanced fuel cell vehicles that use state-of-the-art Pt-based catalysts is about four- to eightfold higher than the target established for mass-produced fuel cell vehicles. Therefore, lowering the Pt loading at the cathode is the most critical mission for the PEM fuel cell development. To do that, significant depth of knowledge in understanding the ORR on Pt and Pt-based electrocatalysts’ surfaces is required; and the search for novel Pt-based electrocatalysts with enhanced ORR activity is seemingly the most productive pathway.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Anode:

An electrode where the electrochemical oxidation reaction(s) occurs, generating free electrons that flow through a polarized electrical device and enter the cathode. In a fuel cell, the fuel oxidation reaction happens at the anode.

Cathode:

An electrode where the electrochemical reduction reaction(s) occurs, by consuming the electrons originated from the anode. In a fuel cell, the oxygen reduction reaction happens at the cathode.

Electrocatalyst:

A material that is applied on the surface of an electrode to catalyze half-cell reactions.

Normal hydrogen electrode (NHE):

Also known as the standard hydrogen electrode (SHE), it is a redox reference electrode which forms the basis of the thermodynamic scale of oxidation–reduction potentials. The potential of the NHE is defined as zero and based on equilibrium of the following redox half-cell reaction, typically on a Pt surface:\( {2}{{{\text H}}^{+} }({{\text aq}}) + {2}{{{\text e}}^{-} } \to {{{\text H}}_2}({{\text g}}).\)The activities of both the reduced form and the oxidized form are maintained at unity. That implies that the pressure of hydrogen gas is 1 atm and the concentration of hydrogen ions in the solution is 1 M.

Oxygen reduction reaction (ORR):

An electrode reaction, in which oxygen gas is reduced at the cathode of an electrochemical cell. The product of the reaction can be water molecules, hydroxyl ions (OH), or sometimes hydrogen peroxide molecules. It is a very important and much-studied electrochemical reaction because it occurs at the cathode of practically all fuel cells.

Proton-exchange membrane fuel cells (PEMFC):

Also known as polymer electrolyte membrane fuel cells, these are a type of fuel cells that use proton-conducting-ionomer membrane as the electrolyte to separate anode and cathode. Their distinguishing features include low operating temperature (∼80°C), high power density, quick start-up, and quick match to shifting demands for power. They are being developed for transport applications as well as stationary and portable applications.

Pt mass activity:

The kinetic current of the oxygen reduction reaction normalized by the mass of Pt metal contained in the electrocatalyst.

Pt-specific activity:

The kinetic current of the oxygen reduction reaction normalized by the electrochemical surface area of the Pt metal contained in the electrocatalyst.

Reversible hydrogen electrode (RHE):

This differs from the NHE by the fact that the hydrogen-ion concentration of RHE reaction is the same as that in the actual electrolyte solution used for the working electrode. The potential of RHE is therefore (−0.059* (pH of the electrolyte)) V.

Bibliography

Primary Literature

  1. Andujar JM, Segura F (2009) Fuel cells: history and updating. A walk along two centuries. Renew Sustain Energy Rev 13(9):2309–2322

    Article  Google Scholar 

  2. Grimes PG (2000) Historical pathways for fuel cells – the new electric century. IEEE Aerosp Electron Syst Mag 15(12):7–10

    Article  Google Scholar 

  3. Appleby AJ (1990) From Sir William Grove to today: fuel cells and the future. J Power Sources 29(1–2):3–11

    Article  Google Scholar 

  4. Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149(7):S59–S67

    Article  Google Scholar 

  5. Thomas CE (2009) Fuel cell and battery electric vehicles compared. Int J Hydrogen Energy 34(15):6005–6020

    Article  Google Scholar 

  6. Gottesfeld S (2007) Fuel cell techno-personal milestones 1984–2006. J Power Sources 171(1):37–45

    Article  Google Scholar 

  7. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14(3 Fall 2005):24–35

    Google Scholar 

  8. Raistrick ID (1986) In: Zee JWV, White RE, Kinoshita K, Burney HS (eds) Diaphragms, separators, and ion-exchange membranes, the electrochemical society proceedings series. The Electrochemical Society, Pennington, p 172

    Google Scholar 

  9. Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22(1):1–7

    Article  Google Scholar 

  10. Wilson MS, Gottesfeld S (1992) High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. J Electrochem Soc 139(2):L28–L30

    Article  Google Scholar 

  11. Wilson MS, Valerio JA, Gottesfeld S (1995) Low platinum loading electrodes for polymer electrolyte fuel-cells fabricated using thermoplastic ionomers. Electrochim Acta 40(3):355–363

    Article  Google Scholar 

  12. Conway BE, Tilak BV (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H-2, and the role of chemisorbed H. Electrochim Acta 47(22–23):3571–3594

    Article  Google Scholar 

  13. Gasteiger HA, Markovic NM, Ross PN (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru.2. rotating disk electrode studies of CO/H2 mixtures at 62-degrees C. J Phys Chem 99(45):16757–16767

    Article  Google Scholar 

  14. Mukerjee S, McBreen J (1996) Hydrogen electrocatalysis by carbon supported Pt and Pt alloys – an in situ x-ray absorption study. J Electrochem Soc 143(7):2285–2294

    Article  Google Scholar 

  15. Neyerlin KC, Gu WB, Jorne J, Gasteiger HA (2007) Study of the exchange current density for the hydrogen oxidation and evolution reactions. J Electrochem Soc 154(7):B631–B635

    Article  Google Scholar 

  16. Tarasevich MR, Sadkowski A, Yeager E (1983) Oxygen electrochemistry. In: Conway BE, Bockris JO, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise in electrochemistry. Plenum Press, New York, p 301

    Chapter  Google Scholar 

  17. Adzic RR (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, pp 197–241

    Google Scholar 

  18. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  19. Markovic NM, Gasteiger HA, Ross PN (1995) Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric-acid-solution – rotating ring-Pt(Hkl) disk studies. J Phys Chem 99(11):3411–3415

    Article  Google Scholar 

  20. Gasteiger HA, Panels JE, Yan SG (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127(1–2):162–171

    Article  Google Scholar 

  21. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35

    Article  Google Scholar 

  22. Damjanovic A, Brusic V (1967) Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim Acta 12(6):615–628

    Article  Google Scholar 

  23. Wang JX, Markovic NM, Adzic RR (2004) Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J Phys Chem B 108(13):4127–4133

    Article  Google Scholar 

  24. Markovic NM, Gasteiger HA, Grgur BN, Ross PN (1999) Oxygen reduction reaction on Pt(111): effects of bromide. J Electroanal Chem 467(1):157–163

    Article  Google Scholar 

  25. Adzic RR (1992) Surface morphology effects in oxygen electrochemistry. In: Scherson D, Tryk D, Xing X (eds) Proceedings of the workshop on structural effects in electrocatalysis and oxygen electrochemistry. The Electrochemical Society, Pennington, p 419

    Google Scholar 

  26. Uribe FA, Wilson MS, Springer TE, Gottesfeld S (1992) Oxygen reduction (ORR) at the Pt/recast ionomer interface and some general comments on the ORR at Pt/aqueous electrolyte interfaces. In: Scherson DD, Tryk D, Xing X (eds) Proceedings of the workshop on structural effects in electrocatalysis and oxygen electrochemistry. The Electrochemical Society, Pennington, p 494

    Google Scholar 

  27. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892

    Article  Google Scholar 

  28. Wang JX, Zhang JL, Adzic RR (2007) Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. J Phys Chem A 111(49):12702–12710

    Article  Google Scholar 

  29. Wang JX, Uribe FA, Springer TE, Zhang JL, Adzic RR (2008) Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications. Faraday Discuss 140:347–362

    Article  Google Scholar 

  30. Neyerlin KC, Gu WB, Jorne J, Gasteiger HA (2006) Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. J Electrochem Soc 153(10):A1955–A1963

    Article  Google Scholar 

  31. Neyerlin KC, Gu W, Jorne J, Clark A, Gasteiger HA (2007) Cathode catalyst utilization for the ORR in a PEMFC – analytical model and experimental validation. J Electrochem Soc 154(2):B279–B287

    Article  Google Scholar 

  32. Neyerlin KC, Gasteiger HA, Mittelsteadt CK, Jorne J, Gu WB (2005) Effect of relative humidity on oxygen reduction kinetics in a PEMFC. J Electrochem Soc 152(6):A1073–A1080

    Article  Google Scholar 

  33. Blurton KF, Greenberg P, Oswin HG, Rutt DR (1972) The electrochemical activity of dispersed platinum. J Electrochem Soc 119(5):559–564

    Article  Google Scholar 

  34. Peuckert M, Yoneda T, Betta RAD, Boudart M (1986) Oxygen reduction on small supported platinum particles. J Electrochem Soc 133(5):944–947

    Article  Google Scholar 

  35. Kinoshita K (1990) Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 137(3):845–848

    Article  Google Scholar 

  36. Ross PN (1986) Structure-property relations in noble metal electrocatalysis. In: The Gordon conference on chemistry at interfaces, Lawrence Berkeley Laboratory, Berkeley/Meriden, July 21–25, 1986. p. LBL-21733

    Google Scholar 

  37. Ross PN (September 1980) Oxygen reduction on supported Pt alloys and intermetallic compounds in phosphoric acid, final report prepared for the electric power research institute. Electric Power Research Institute, Palo Alto, September 1980

    Google Scholar 

  38. Sattler ML, Ross PN (1986) The surface structure of Pt crystallites supported on carbon black. Ultramicroscopy 20:21–28

    Article  Google Scholar 

  39. Landsman DA, Luczak FJ (2003) Catalyst studies and coating technologies. In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells. Wiley, Chichester, p 811

    Google Scholar 

  40. Thompsett D (2003) Pt alloys as oxygen reduction catalysts. In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells – fundamentals, technology and applications. Wiley, Chichester, p 467

    Google Scholar 

  41. Markovic N, Gasteiger H, Ross PN (1997) Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc 144(5):1591–1597

    Article  Google Scholar 

  42. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497

    Article  Google Scholar 

  43. Hammer B, Norskov JK (2000) Theoretical surface science and catalysis – calculations and concepts. In: Gates BC, Knozinger H (eds) Advances in catalysis, vol 45. Academic, San Diego, pp 71–129

    Google Scholar 

  44. Norskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) Universality in heterogeneous catalysis. J Catal 209(2):275–278

    Article  Google Scholar 

  45. Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Norskov JK (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal 223(1):232–235

    Article  Google Scholar 

  46. Xu Y, Mavrikakis M (2003) Adsorption and dissociation of O2 on gold surfaces: effect of steps and strain. J Phys Chem B 107(35):9298–9307

    Article  Google Scholar 

  47. Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J Am Chem Soc 126(14):4717–4725

    Article  Google Scholar 

  48. Greeley J, Rossmeisl J, Hellman A, Norskov JK (2007) Theoretical trends in particle size effects for the oxygen reduction reaction. Z Phys Chemie-Int J Res Phys Chem Chem Phys 221(9–10):1209–1220

    Google Scholar 

  49. Mukerjee S, McBreen J (1998) Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. J Electroanal Chem 448(2):163–171

    Article  Google Scholar 

  50. Yano H, Inukai J, Uchida H, Watanabe M, Babu PK, Kobayashi T, Chung JH, Oldfield E, Wieckowski A (2006) Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and Pt-195 EC-NMR study. Phys Chem Chem Phys 8(42):4932–4939

    Article  Google Scholar 

  51. Gasteiger HA, Markovic NM (2009) Just a dream-or future reality? Science 324(5923):48–49

    Article  Google Scholar 

  52. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction – an in-situ Xanes and Exafs investigation. J Electrochem Soc 142(5):1409–1422

    Article  Google Scholar 

  53. Wakabayashi N, Takeichi M, Uchida H, Watanabe M (2005) Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes. J Phys Chem B 109(12):5836–5841

    Article  Google Scholar 

  54. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim Acta 47(22–23):3787–3798

    Article  Google Scholar 

  55. Glass JT, Cahen JGL, Stoner GE, Taylor EJ (1987) The effect of metallurgical variables on the electrocatalytic properties of PtCr alloys. J Electrochem Soc 134(1):58–65

    Article  Google Scholar 

  56. Paffett MT, Daube KA, Gottesfeld S, Campbell CT (1987) Electrochemical and surface science investigations of PtCr alloy electrodes. J Electroanal Chem 220(2):269–285

    Article  Google Scholar 

  57. Beard BC, Ross JPN (1990) The structure and activity of Pt-Co alloys as oxygen reduction electrocatalysts. J Electrochem Soc 137(11):3368–3374

    Article  Google Scholar 

  58. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750–3756

    Article  Google Scholar 

  59. Koh S, Hahn N, Yu CF, Strasser P (2008) Effects of composition and annealing conditions on catalytic activities of dealloyed Pt-Cu nanoparticle electrocatalysts for PEMFC. J Electrochem Soc 155(12):B1281–B1288

    Article  Google Scholar 

  60. Schulenburg H, Muller E, Khelashvili G, Roser T, Bonnemann H, Wokaun A, Scherer GG (2009) Heat-treated PtCo3 nanoparticles as oxygen reduction catalysts. J Phys Chem C 113(10):4069–4077

    Article  Google Scholar 

  61. Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130(11):2299–2302

    Article  Google Scholar 

  62. Jalan V, Taylor EJ (1984) Importance of interatomic spacing in the catalytic reduction of oxygen in phosphoric acid. In: McIntyre JDE, Weaver MJ, Yeager EB (eds) The Electrochemical Society Softbound Proceedings Series. The Electrochemical Society, Pennington, p 546

    Google Scholar 

  63. Landsman DA, Luczak FJ (1982) Noble metal-chromium alloy catalysts and electrochemical cell. US Patent 4,316,944, United Technologies Corporation: US

    Google Scholar 

  64. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247

    Article  Google Scholar 

  65. Toda T, Igarashi H, Watanabe M (1999) Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J Electroanal Chem 460(1–2):258–262

    Google Scholar 

  66. M-k M, Cho J, Cho K, Kim H (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45(25–26):4211–4217

    Google Scholar 

  67. Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129(42):12624

    Article  Google Scholar 

  68. Gottesfeld S (1986) The ellipsometric characterization of Pt + Cr alloy surfaces in acid solutions. J Electroanal Chem 205(1–2):163–184

    Google Scholar 

  69. Paffett MT, Beery JG, Gottesfeld S (1988) Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platinum. J Electrochem Soc 135(6):1431–1436

    Article  Google Scholar 

  70. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357(1–2):201–224

    Google Scholar 

  71. Toda T, Igarashi H, Watanabe M (1998) Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen. J Electrochem Soc 145(12):4185–4188

    Article  Google Scholar 

  72. Mun BS, Watanabe M, Rossi M, Stamenkovic V, Markovic NM, Ross PN (2005) A study of electronic structures of Pt3M (M = Ti, V, Cr, Fe, Co, Ni) polycrystalline alloys with valence-band photoemission spectroscopy. J Chem Phys 123(20):204717

    Article  Google Scholar 

  73. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Norskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556

    Article  Google Scholar 

  74. Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Effect of preparation conditions of Pt Alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies. J Phys Chem 99(13):4577–4589

    Article  Google Scholar 

  75. Uribe FA, Zawodzinski TA (2002) A study of polymer electrolyte fuel cell performance at high voltages. Dependence on cathode catalyst layer composition and on voltage conditioning. Electrochim Acta 47(22–23):3799–3806

    Article  Google Scholar 

  76. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2002) Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J Phys Chem B 106(46):11970–11979

    Article  Google Scholar 

  77. Murthi VS, Urian RC, Mukerjee S (2004) Oxygen reduction kinetics in low and medium temperature acid environment: Correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J Phys Chem B 108(30):11011–11023

    Article  Google Scholar 

  78. Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2005) Correlation of water activation, surface properties, and oxygen reduction reactivity of supported Pt-M/C bimetallic electrocatalysts using XAS. J Electrochem Soc 152(11):A2159–A2169

    Article  Google Scholar 

  79. Lima FHB, Ticianelli EA (2004) Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum-cobalt electrodes in alkaline media. Electrochim Acta 49(24):4091–4099

    Article  Google Scholar 

  80. Lima FHB, Giz MJ, Ticianelli EA (2005) Electrochemical performance of dispersed Pt-M (M = V, Cr and Co) nanoparticles for the oxygen reduction electrocatalysis. J Braz Chem Soc 16(3 A):328–336

    Article  Google Scholar 

  81. Lima FHB, Salgado JRC, Gonzalez ER, Ticianelli EA (2007) Electrocatalytic properties of PtCoC and PtNiC alloys for the oxygen reduction reaction in alkaline solution. J Electrochem. So. 154(4)

    Google Scholar 

  82. Creemers C, Deurinck P (1997) Platinum segregation to the (111) surface of ordered Pt80Fe20: LEIS results and model simulations. Surf Interface Anal 25(3):177–189

    Article  Google Scholar 

  83. Gauthier Y, Joly Y, Baudoing R, Rundgren J (1985) Surface-sandwich segregation on nondilute bimetallic alloys: Pt50Ni50 and Pt78Ni22 probed by low-energy electron diffraction. Phys Rev B 31(10):6216–6218

    Article  Google Scholar 

  84. Gauthier Y, Baudoing-Savois R, Bugnard JM, Hebenstreit W, Schmid M, Varga P (2000) Segregation and chemical ordering in the surface layers of Pt25Co75(111): a LEED/STM study. Surf Sci 466(1–3):155–166

    Article  Google Scholar 

  85. Gasteiger HA, Ross PN Jr, Cairns EJ (1993) LEIS and AES on sputtered and annealed polycrystalline Pt-Ru bulk alloys. Surf Sci 293(1–2):67–80

    Article  Google Scholar 

  86. Ruban AV, Skriver HL, Norskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59(24):15990–16000

    Article  Google Scholar 

  87. Ma Y, Balbuena PB (2008) Pt surface segregation in bimetallic Pt3M alloys: a density functional theory study. Surf Sci 602(1):107–113

    Article  Google Scholar 

  88. Chen S, Ferreira PJ, Sheng WC, Yabuuchi N, Allard LF, Shao-Horn Y (2008) Enhanced activity for oxygen reduction reaction on “Pt3CO” nanoparticles: direct evidence of percolated and sandwich-segregation structures. J Am Chem Soc 130(42):13818–13819

    Article  Google Scholar 

  89. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128(27):8813–8819

    Article  Google Scholar 

  90. Chen S, Sheng WC, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2009) Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113(3):1109–1125

    Article  Google Scholar 

  91. Koh S, Leisch J, Toney MF, Strasser P (2007) Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers. J Phys Chem C 111(9):3744–3752

    Article  Google Scholar 

  92. Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112(7):2770–2778

    Article  Google Scholar 

  93. Srivastava R, Mani P, Hahn N, Strasser P (2007) Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles. Angew Chem Int Ed Engl 46(47):8988–8991

    Article  Google Scholar 

  94. Neyerlin KC, Srivastava R, Yu CF, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186(2):261–267

    Article  Google Scholar 

  95. Wang C, Van Der Vliet D, Chang KC, You H, Strmcnik D, Schlueter JA, Markovic NM, Stamenkovic VR (2009) Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J Phys Chem C 113(45):19365–19368

    Article  Google Scholar 

  96. Watanabe M, Wakisaka M, Yano H, Uchida H (2008) Analyses of oxygen reduction reaction at Pt-based electrocatalysts. ECS Trans 16:199–206

    Article  Google Scholar 

  97. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2008) Increased oxygen coverage at Pt-Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC-XPS. J Phys Chem C 112(7):2750–2755

    Article  Google Scholar 

  98. Ferreira PJ, la O GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – a mechanistic investigation. J Electrochem Soc 152(11):A2256–A2271

    Article  Google Scholar 

  99. Colon-Mercado HR, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155(2):253–263

    Article  Google Scholar 

  100. Morita T, Kojima K (2008) Development of fuel cell hybrid vehicle in Toyota. ECS Trans 16:185–198

    Google Scholar 

  101. Uchimura M, Sugawara S, Suzuki Y, Zhang J, Kocha SS (2008) Electrocatalyst durability under simulated automotive drive cycles. ECS Trans 16(2):225–234

    Article  Google Scholar 

  102. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46(3–4):249–262

    Article  Google Scholar 

  103. Brankovic SR, Wang JX, Adzic RR (2001) Pt submonolayers on Ru nanoparticles – a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem Solid State Lett 4(12):A217–A220

    Article  Google Scholar 

  104. Sasaki K, Mo Y, Wang JX, Balasubramanian M, Uribe F, McBreen J, Adzic RR (2003) Pt submonolayers on metal nanoparticles – novel electrocatalysts for H2 oxidation and O2 reduction. Electrochim Acta 48(25–26):3841–3849

    Article  Google Scholar 

  105. Wang JX, Brankovic SR, Zhu Y, Hanson JC, Adzic RR (2003) Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles. J Electrochem Soc 150(8):A1108–A1117

    Article  Google Scholar 

  106. Brankovic SR, McBreen J, Adzic RR (2001) Spontaneous deposition of Pt on the Ru(0001) surface. J Electroanal Chem 503(1–2):99–104

    Google Scholar 

  107. Sasaki K, Wang JX, Balasubramanian M, McBreen J, Uribe F, Adzic RR (2004) Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochim Acta 49(22–23 SPEC. ISS):3873–3877

    Article  Google Scholar 

  108. Kolb DM, Przasnyski M, Gerischer H (1974) Underpotential deposition of metals and work function differences. J Electroanal Chem 54(1):25–38

    Article  Google Scholar 

  109. Herrero E, Buller LJ, Abruna HD (2001) Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem Rev 101(7):1897–1930

    Article  Google Scholar 

  110. Aramata A (1997) Underpotential deposition on single-crystal metals. In: Bockris JO, White RE, Conway BE (eds) Modern aspects of electrochemistry. Plenum, New York

    Google Scholar 

  111. Brankovic SR, Wang JX, Adzic RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474(1–3):L173–L179

    Article  Google Scholar 

  112. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(30):10955–10964

    Article  Google Scholar 

  113. Zhang J, Vukmirovic MB, Sasaki K, Uribe F, Adzic RR (2005) Platinum monolayer electro catalysts for oxygen reduction: effect of substrates, and long-term stability. J Serb Chem Soc 70(3):513–525

    Article  Google Scholar 

  114. Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed Engl 44(14):2132–2135

    Article  Google Scholar 

  115. Zhang JL, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127(36):12480–12481

    Article  Google Scholar 

  116. Zhou WP, Yang XF, Vukmirovic MB, Koel BE, Jiao J, Peng GW, Mavrikakis M, Adzic RR (2009) Improving electrocatalysts for O-2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy. J Am Chem Soc 131(35):12755–12762

    Article  Google Scholar 

  117. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109(48):22701–22704

    Article  Google Scholar 

  118. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809):220–222

    Article  Google Scholar 

  119. Wang JX, Inada H, Wu LJ, Zhu YM, Choi YM, Liu P, Zhou WP, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and pt shell thickness effects. J Am Chem Soc 131(47):17298–17302

    Article  Google Scholar 

  120. Sasaki K, Wang JX, Naohara H, Marinkovic N, More K, Inada H, Adzic RR (2010) Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim Acta 55(8):2645–2652

    Article  Google Scholar 

  121. Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3–4):285–305

    Article  Google Scholar 

  122. Yu PT, Gu W, Makharia R, Wagner FT, Gasteiger HA (2006) The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Trans 3:797–809

    Article  Google Scholar 

  123. Yu PT, Kocha S, Paine L, Gu W, Wagner FT (2004) The effects of air purge on the degradation of PEM fuel cells during startup and shutdown procedures. In: 2004 AIChE spring national meeting, conference proceedings, New Orleans, pp 521–527

    Google Scholar 

  124. Debe MK (2003) Novel catalyst, catalyst support and catalyst coated membrane methods. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells – fundamentals technology and applications. Wiley, Chichester

    Google Scholar 

  125. Gancs L, Kobayashi T, Debe MK, Atanasoski R, Wieckowski A (2008) Crystallographic characteristics of nanostructured thin-film fuel cell electrocatalysts: a HRTEM study. Chem Mater 20(7):2444–2454

    Article  Google Scholar 

  126. Debe MK, Drube AR (1995) Structural characteristics of a uniquely nanostructured organic thin film. J Vac Sci Technol B Microelectron Nanometer Struct 13(3):1236–1241

    Article  Google Scholar 

  127. Debe MK, Schmoeckel AK, Vernstrorn GD, Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161(2):1002–1011

    Article  Google Scholar 

  128. Bonakdarpour A, Stevens K, Vernstrom GD, Atanasoski R, Schmoeckel AK, Debe MK, Dahn JR (2007) Oxygen reduction activity of Pt and Pt-Mn-Co electrocatalysts sputtered on nano-structured thin film support. Electrochim Acta 53(2):688–694

    Article  Google Scholar 

  129. Debe MK, Schmoeckel AK, Hendricks SM, Vernstrom GD, Haugen GM, Atanasoski RT (2005) Durability aspects of nanostructured thin film catalysts for PEM fuel cells. ECS Trans 1:51–66

    Article  Google Scholar 

  130. Chen ZW, Waje M, Li WZ, Yan YS (2007) Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew Chem Int Edit Engl 46(22):4060–4063

    Article  Google Scholar 

  131. Mayers B, Jiang X, Sunderland D, Cattle B, Xia Y (2003) Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. J Am Chem Soc 125(44):13364–13365

    Article  Google Scholar 

  132. Sun Y, Tao Z, Chen J, Herricks T, Xia Y (2004) Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen. J Am Chem Soc 126(19):5940–5941

    Article  Google Scholar 

  133. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745

    Article  Google Scholar 

  134. Sun SH, Zhang GX, Geng DS, Chen YG, Banis MN, Li RY, Cai M, Sun XL (2010) Direct growth of single-crystal Pt nanowires on Sn@CNT nanocable: 3D electrodes for highly active electrocatalysts. Chem Eur J 16(3):829–835

    Article  Google Scholar 

  135. Peng ZM, Yang H (2009) Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J Am Chem Soc 131(22):7542

    Article  Google Scholar 

  136. Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305

    Article  Google Scholar 

  137. Lim BW, Lu XM, Jiang MJ, Camargo PHC, Cho EC, Lee EP, Xia YN (2008) Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett 8(11):4043–4047

    Article  Google Scholar 

  138. Erlebacher J, Snyder J (2009) Dealloyed nanoporous metals for PEM fuel cell catalysis. ECS Trans 25:603–612

    Article  Google Scholar 

  139. Zeis R, Mathur A, Fritz G, Lee J, Erlebacher J (2007) Platinum-plated nanoporous gold: An efficient, low Pt loading electrocatalyst for PEM fuel cells. J Power Sources 165(1):65–72

    Article  Google Scholar 

  140. Erlebacher J (2009) Materials science of hydrogen/oxygen fuel cell catalysis. In: Ehrenreich H, Spaepen F (eds) Solid state physics – advances in research and applications. Academic, New York, pp 77–141

    Google Scholar 

  141. Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132(14):4984–4985

    Article  Google Scholar 

  142. Zhang J, Yang H, Fang J, Zou S (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett 10(2):638–644

    Article  Google Scholar 

Books and Reviews

  • Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Lipkowski J, Ross P (eds) (1998) Electrocatalysis (frontiers in electrochemistry). Wiley-VCH, Danvers

    Google Scholar 

  • Markovic NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45(4–6):117–229

    Article  Google Scholar 

  • Newman J, Thomas-Alyea KE (2004) Electrochemical system, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Vielstich W, Gasteiger H, Lamm A (eds) (2003) Handbook of fuel cells: fundamentals, technology, applications. Wiley, Chichester

    Google Scholar 

  • Vielstich W, Gasteiger H, Lamm A (eds) (2009) Handbook of fuel cells: advances in electrocatalysis, materials, diagnostics and durability, vol 5 and 6. Wiley, New York

    Google Scholar 

  • Wieckowski A, Savinova ER, Vayenas CG (eds) (2003) Catalysis and electrocatalysis at nanoparticle surfaces, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Zhang J (ed) (2008) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, 1st edn. Springer, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, J. (2013). PEM Fuel Cells and Platinum-Based Electrocatalysts. In: Kreuer, KD. (eds) Fuel Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5785-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5785-5_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5784-8

  • Online ISBN: 978-1-4614-5785-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics