Advertisement

Emission Processes

  • Gregory D. Fleishman
  • Igor N. Toptygin
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 388)

Abstract

A classical problem of calculating the electromagnetic emission produced by a charge (or a group of charges) moving in the vacuum is formulated in terms of computing the Poynting vector flux through a closed infinitely distant surface surrounding the radiation source (Melrose 1980;Rybicki and Lightman 1986; Ginzburg 1987;Nagirner 2007b). In contrast, computing the emission from a plasma, which is an anisotropic, dispersive, and absorbing matter, is distinctly different from the classical vacuum problem. In particular, unlike the vacuum case, the polarization vectors of the eigenmodes are not arbitrary any longer, while set up by the plasma dispersion (see Chap.3). Then, the concept of the nonzero energy flux through an infinitely distant surface can only work in case of truly nonabsorbing matter, which is strictly speaking not the case for real media including astrophysical plasmas.

Keywords

Synchrotron Radiation Dielectric Permittivity Lorentz Force Spatial Dispersion Fast Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. F. Aharonian et al., Discovery of two candidate pulsar wind nebulae in very-high-energy gamma rays. A&A 472, 489–495 (2007)ADSCrossRefGoogle Scholar
  2. V.A. Bazylev, N.K. Zhevago,Emission from Fast Particles in Matter and in External Fields [in Russian] (Izdatelstvo Nauka, Moscow, 1987)Google Scholar
  3. V.Y. Eidman. Soviet Phys.-JETP7, 91 (1958)Google Scholar
  4. V.Y. Eidman. Soviet Phys.-JETP 9, 947 (1959)Google Scholar
  5. G.D. Fleishman, Generation of emissions by fast particles in stochastic media. ArXiv Astrophysics e-prints, astro-ph/0510317 (2005)Google Scholar
  6. G.D. Fleishman, Diffusive synchrotron radiation from relativistic shocks in gamma-ray burst sources. ApJ 638, 348–353 (2006)ADSCrossRefGoogle Scholar
  7. G.D. Fleishman,Stokhasticheskaya Teoriya Izlucheniya [in Russian] (IKI, Moscow–Izhevsk, 2008)Google Scholar
  8. G.D. Fleishman, E.P. Kontar, Sub-THz radiation mechanisms in solar flares. ApJ 709, L127–L132 (2010)ADSCrossRefGoogle Scholar
  9. V.L. Ginzburg,Theoretical Physics and Astrophysics, 3rd revised and enlarged edn. [in Russian] (Izdatel Nauka, Moscow, 1987)Google Scholar
  10. V.L. Ginzburg, S.I. Syrovatskii, Cosmic magnetobremsstrahlung (synchrotron radiation). ARA&A 3, 297–+ (1965)Google Scholar
  11. V.L. Ginzburg, V.N. Tsytovich,Transition Radiation and Transition Scattering (Hilger, Bristol, 1990)Google Scholar
  12. S. Jester, H.J. Röser, K. Meisenheimer, R. Perley, The radio-ultraviolet spectral energy distribution of the jet in 3C 273. A&A 431, 477–502 (2005)ADSCrossRefGoogle Scholar
  13. P. Kaufmann, G. Trottet, C.G. Giménez de Castro, J.P. Raulin, S. Krucker, A.Y. Shih, H. Levato, Sub-terahertz, microwaves and high energy emissions during the 6 December 2006 Flare, at 18:40 UT. Solar Phys. 255, 131–142 (2009)ADSCrossRefGoogle Scholar
  14. W.C. Keel, The optical continua of extragalactic radio jets. ApJ 329, 532–550 (1988)ADSCrossRefGoogle Scholar
  15. L.D. Landau, E.M. Lifshitz, The classical theory of fields,Course of Theoretical Physics - Pergamon International Library of Science, Technology, Engineering and Social Studies, 3rd revised, English edn. (Pergamon Press, Oxford, 1971)Google Scholar
  16. H.L. Marshall, B.P. Miller, D.S. Davis, E.S. Perlman, M. Wise, C.R. Canizares, D.E. Harris, A high-resolution X-ray image of the Jet in M87. ApJ 564, 683–687 (2002)ADSCrossRefGoogle Scholar
  17. D.B. Melrose, The emission and absorption of waves by charged particles in magnetized plasmas. Astrophys. Space. Sci. 2, 171–235 (1968)MathSciNetADSCrossRefGoogle Scholar
  18. D.B. Melrose,Plasma astrohysics. Nonthermal processes in diffuse magnetized plasmas - vol.1: The emission, absorption and transfer of waves in plasmas; vol.2: Astrophysical applications (Gordon and Breach, New York, 1980)Google Scholar
  19. A.B. Migdal, Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev.103, 1811–1820 (1956)ADSzbMATHCrossRefGoogle Scholar
  20. D.I. Nagirner, Radiatsionnye Mekhanizmy v Astrofizike [in Russian] (SPb University, St. Petersburg, 2007b)Google Scholar
  21. I.A. Nikolaev, V.N. Tsytovich, The power law spectra of relativistic electrons in a plasma in a random magnetic field. Phys. Scripta 20, 665–668 (1979)ADSCrossRefGoogle Scholar
  22. G.M. Nita, D.E. Gary, G.D. Fleishman, Spatial evidence for transition radiation in a solar radio burst. ApJ 629, L65–L68 (2005)ADSCrossRefGoogle Scholar
  23. E.S. Perlman, J.A. Biretta, W.B. Sparks, F.D. Macchetto, J.P. Leahy, The optical-near-infrared spectrum of the M87 Jet from Hubble space telescope observations. ApJ 551, 206–222 (2001)ADSCrossRefGoogle Scholar
  24. K.Y. Platonov, G.D. Fleishman, Transition radiation in media with random inhomogeneities. Uspekhi Fizicheskikh Nauk 45, 235–291 (2002)CrossRefGoogle Scholar
  25. R. Ramaty, Gyrosynchrotron emission and absorption in a magnetoactive plasma. ApJ 158, 753 (1969)ADSCrossRefGoogle Scholar
  26. Y. Rephaeli, Comptonization of the cosmic microwave background: the Sunyaev-Zeldovich effect. ARA&A 33, 541–580 (1995)ADSCrossRefGoogle Scholar
  27. G.H. Rieke, W.Z. Wisniewski, M.J. Lebofsky, Abrupt cutoffs in the optical-infrared spectra of nonthermal sources. ApJ 263, 73–78 (1982)ADSCrossRefGoogle Scholar
  28. A.A. Ruzmaikin, D.D. Sokolov, A.M. Shukurov (eds.), Magnetic fields of galaxies. Astrophysics and Space Science Library, vol. 133 (Kluwer, Dordrecht, 1988)Google Scholar
  29. G.B. Rybicki, A.P. Lightman,Radiative Processes in Astrophysics (Wiley, New York, 1986)Google Scholar
  30. M.L. Ter-Mikhaelyan, Reviews of topical problems: high energy electromagnetic processes in amorphous and inhomogeneous media. Physics Uspekhi 46, 1231–1252 (2003)ADSCrossRefGoogle Scholar
  31. I.N. Toptygin, G.D. Fleishman, A role of cosmic rays in generation of radio and optical radiation by plasma mechanics. Astrophys. Space. Sci. 132, 213–248 (1987)ADSzbMATHCrossRefGoogle Scholar
  32. I.N. Toptygin, G.D. Fleishman, Methodological notes: eigenmode generation by a given current in anisotropic and gyrotropic media. Physics Uspekhi 51, 363–374 (2008)ADSCrossRefGoogle Scholar
  33. B.A. Trubnikov, Plasma radiation in a magnetic field. Soviet Phys. Dokl.3, 136 (1958)Google Scholar
  34. C.Z. Waters, S.E. Zepf, Ultraviolet hubble space telescope observations of the Jet in M87. ApJ 624, 656–660 (2005)ADSCrossRefGoogle Scholar
  35. K.C. Westfold, The polarization of synchrotron radiation. ApJ 130, 241 (1959)MathSciNetADSCrossRefGoogle Scholar
  36. Y.B. Zeldovich, R.A. Sunyaev, The interaction of matter and radiation in a hot-model universe. Astrophys. Space. Sci. 4, 301–316 (1969)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gregory D. Fleishman
    • 1
  • Igor N. Toptygin
    • 2
  1. 1.Center for Solar-Terrestrial Research New Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of Theoretical PhysicsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations