Advertisement

Instability of MHD Motion and Astrophysical MHD Turbulence

  • Gregory D. Fleishman
  • Igor N. Toptygin
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 388)

Abstract

Let us define the stable states as such medium motion or rest states, in which small random perturbations of macroscopic parameters do not increase, while they can oscillate with some damping rate and so eventually dissipate. In astrophysics, however, there are numerous examples of the states, which are not stable. Instead, an instability takes place in many cases: small random perturbations of the macroscopic parameters rise at the expense of either mechanical or magnetic energy.

Keywords

Magnetic Field Shock Wave Rayleigh Number Shock Front Contact Discontinuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. M.J. Aschwanden,Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. (Springer, Berlin, 2005)Google Scholar
  2. S.A. Balbus, Enhanced angular momentum transport in accretion disks. ARA&A 41, 555–597 (2003)ADSCrossRefGoogle Scholar
  3. S.A. Balbus, J.F. Hawley, A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution. ApJ 376, 214–233 (1991)Google Scholar
  4. V.S. Beskin, Gravitatsiya i Astrofizika [in Russian] (Fizmatlit, Moscow, 2009a)Google Scholar
  5. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961)MATHGoogle Scholar
  6. J. Cho, A. Lazarian, E.T. Vishniac, New regime of magnetohydrodynamic turbulence: cascade below the viscous cutoff. ApJ 566, L49–L52 (2002)ADSCrossRefGoogle Scholar
  7. L.L. Cowie, A. Songaila, High-resolution optical and ultraviolet absorption-line studies of interstellar gas. ARA&A 24, 499–535 (1986)ADSCrossRefGoogle Scholar
  8. P.G. Frick,Turbulentnost’: Podkhody i Modeli [in Russian] (IKI, Moscow–Izhevsk, 2003)Google Scholar
  9. A. Friedman, Z. Physik10, 377 (1922)Google Scholar
  10. U. Frisch, Turbulence. The legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)Google Scholar
  11. P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence. ApJ 438, 763–775 (1995)Google Scholar
  12. G.S. Golitsyn, Fluctuations of the magnetic field and current density in a turbulent flow of a weakly conducting fluid. Soviet Phys. Dokl.5, 536 (1960)Google Scholar
  13. G.S. Golitsyn, Dissipation fluctuations in locally isotropic turbulent flow. Soviet Phys. Dokl. 7, 380 (1962)ADSGoogle Scholar
  14. E. Hubble, Proc. Nat. Acad. Sci. Wash.15, 168 (1929)Google Scholar
  15. S.A. Kaplan, S.B. Pikel’ner,The Physics of the Interstellar Medium [in Russian] (Izdatelstvo Nauka, Moscow, 1979)Google Scholar
  16. A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akademiia Nauk SSSR Dokl.30, 301–305 (1941)ADSGoogle Scholar
  17. L.S. Kovasznay, The spectrum of locally isotropic turbulence. Phys. Rev. 73, 1115–1116 (1948)ADSMATHCrossRefGoogle Scholar
  18. L.D. Landau, E.M. Lifshitz,Hydrodynamik (Akademie-Verlag, Berlin, 1966)Google Scholar
  19. J.G. Lominadze, Development of the Theory of Instabilities of Differentially Rotating Plasma with Astrophysical Applications, ed. by A. Bonanno, E. de Gouveia Dal Pino, A.G. Kosovichev. IAU Symposium, vol. 274, pp. 318–324 (2011)Google Scholar
  20. A.B. Mikhailovskii, J.G. Lominadze, A.P. Churikov, V.D. Pustovitov. Progress in theory of instabilities in a rotating plasma. Plasma Phys. Rep. 35, 273–314 (2009)ADSCrossRefGoogle Scholar
  21. A.S. Monin, A.M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965)Google Scholar
  22. A.M. Obukhov, On spectral energy distribution in a turbulent flow. Izvestiya AN SSSR: Seria Geography & Geophysics5, 453–466 (1941)Google Scholar
  23. K. Rohlfs (ed.), Lectures on density wave theory, inLecture Notes in Physics, vol. 69 (Springer, Berlin, 1977)Google Scholar
  24. A.A. Ruzmaikin, D.D. Sokolov, A.M. Shukurov (eds.), Magnetic fields of galaxies. Astrophysics and Space Science Library, vol. 133 (Kluwer, Dordrecht, 1988)Google Scholar
  25. A.A. Schekochihin, S.C. Cowley,Turbulence and Magnetic Fields in Astrophysical Plasmas, p. 85 (Springer, Berlin, 2007)Google Scholar
  26. J.V. Shebalin, W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525–547 (1983)ADSCrossRefGoogle Scholar
  27. H.C. Spruit, A. Nordlund, A.M. Title, Solar convection. ARA&A 28, 263–301 (1990)CrossRefGoogle Scholar
  28. S. Sridhar, P. Goldreich, Toward a theory of interstellar turbulence. 1: Weak Alfvenic turbulence. ApJ 432, 612–621 (1994)Google Scholar
  29. S.I. Vainshtein, A.M. Bykov, I.N. Toptygin,Turbulence, Current Sheets, and Shocks in Cosmic Plasma (Gordon and Breach Science Publishers, New York, 1993)Google Scholar
  30. S. Weinberg,Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)Google Scholar
  31. Y.B. Zel’dovich, I.D. Novikov,Theory of Gravitation and the Evolution of Stars [in Russian] (Nauka, Moskva, 1971)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gregory D. Fleishman
    • 1
  • Igor N. Toptygin
    • 2
  1. 1.Center for Solar-Terrestrial Research New Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of Theoretical PhysicsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations