Advertisement

Nonlinear MHD Waves and Discontinuities

  • Gregory D. Fleishman
  • Igor N. Toptygin
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 388)

Abstract

Linear waves considered in Chap. 2 describe perturbations with small amplitudes. In the astrophysical conditions, however, a strong energy release gives often rise to large-amplitude perturbations, which cannot be fully accommodated by the linear theory and so require non-linear treatment. In this chapter we consider a number of important examples of the nonlinear waves—simple waves, solitons, and discontinuities—with the use of exact or approximate analytical methods.

Keywords

Shock Wave Current Sheet Shock Front Burger Equation Simple Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. M.J. Aschwanden,Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. (Springer, Berlin, 2005)Google Scholar
  2. A. Benz (ed.), Plasma astrophysics, 2nd edn., Astrophysics and Space Science Library, vol. 279 (Kluwer, Dordrecht, 2002)Google Scholar
  3. G.S. Bisnovatyi-Kogan, S.A. Silich, Shock-wave propagation in the nonuniform interstellar medium. Rev. Mod. Phys. 67, 661–712 (1995)ADSCrossRefGoogle Scholar
  4. R.D. Blandford, C.F. McKee, Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130–1138 (1976)ADSzbMATHCrossRefGoogle Scholar
  5. S.I. Blinnikov, V.S. Imshennik, V.P. Utrobin, The cygnus superbubble as the remnant of a peculiar supernova. Soviet Astron. Lett. 8, 361–365 (1982)ADSGoogle Scholar
  6. A.V. Filippenko, Optical spectra of supernovae. ARA&A 35, 309–355 (1997)ADSCrossRefGoogle Scholar
  7. D.E. Gary, C.U. Keller (eds.), Solar and space weather radiophysics - current status and future developments, Astrophysics and Space Science Library, vol. 314 (Kluwer, Dordrecht, 2004)Google Scholar
  8. S.N. Gurbatov, A.I. Saichev, I.G. Iakushkin, Nonlinear waves and one-dimensional turbulence in nondispersive media. Soviet Phys. Uspekhi 141, 221–255 (1983)ADSCrossRefGoogle Scholar
  9. A.V. Gurevich, L.P. Pitaevskii, Decay of initial discontinuity in the Korteweg-de Vries equation. Soviet J. Exp. Theor. Phys. Lett. 17, 193 (1973)Google Scholar
  10. A.V. Gurevich, L.P. Pitaevskii, An averaged description of waves in the Kortweg-de Vries-Burgers equation. Zhurnal Eksperimental noi i Teoreticheskoi Fiziki93, 871–880 (1987)MathSciNetADSGoogle Scholar
  11. A.J. Hundhausen, Coronal Expansion and Solar Wind (Springer, Berlin, 1972)CrossRefGoogle Scholar
  12. V.S. Imshennik, N.A. Bobrova, Dynamics of Collision Plasmas [in Russian] (Energoatomizdat, Moscow, 1997)Google Scholar
  13. V.S. Imshennik, D.K. Nadezhin, Supernova 1987A in the Large Magellanic Cloud: Observations and Theory (Harwood Academic Publishers, Amsterdam, 1989)Google Scholar
  14. A.S. Kompaneets, A point explosion in an inhomogeneous atmosphere. Soviet Phys. Dokl. 5., 46 (1960)Google Scholar
  15. V.P. Korobeinikov, Problem of strong point explosion in a gas with zero temperature gradient. Dokl. Akad. Nauk SSSR109, 271–273 (1956)Google Scholar
  16. D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Phil. Mag.39, 422–443 (1895)zbMATHGoogle Scholar
  17. L.D. Landau, E.M. Lifshitz,Hydrodynamik (Akademie-Verlag, Berlin, 1966)Google Scholar
  18. T.A. Lozinskaya, Supernovae and Stellar Wind in the Interstellar Medium (American Institute of Physics, New York, 1992)Google Scholar
  19. M.M. Mac Low, R. McCray, Superbubbles in disk galaxies. ApJ 324, 776–785 (1988)ADSCrossRefGoogle Scholar
  20. M.M. Mac Low, R. McCray, M.L. Norman, Superbubble blowout dynamics. ApJ 337, 141–154 (1989)ADSCrossRefGoogle Scholar
  21. D.K. Nadyozhin, V.S. Imshennik, Physics of supernovae. Int. J. Mod. Phys. A 20, 6597–6611 (2005)ADSCrossRefGoogle Scholar
  22. E. Priest, T. Forbes,Magnetic Reconnection (Cambridge University Press, Cambridge, 2000)Google Scholar
  23. A.A. Ruzmaikin, D.D. Sokolov, A.M. Shukurov (eds.), Magnetic fields of galaxies. Astrophysics and Space Science Library, vol. 133 (Kluwer, Dordrecht, 1988)Google Scholar
  24. R.Z. Sagdeev, Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 23 (1966)ADSGoogle Scholar
  25. L.I. Sedov, Metody Podobiya i Razmernosti v Mekhanike [in Russian] (Nauka, Moscow, 1987)Google Scholar
  26. I.S. Shklovskij,Supernovae and Problems Connected With Them [in Russian] (Nauka, Moskva, 1976)Google Scholar
  27. S.J. Smartt, Progenitors of core-collapse supernovae. ARA&A 47, 63–106 (2009)ADSCrossRefGoogle Scholar
  28. A. Solinger, J. Buff, S. Rappaport, Isothermal blast wave model of supernova remnants. ApJ 201, 381–386 (1975)ADSCrossRefGoogle Scholar
  29. B.V. Somov, Plasma Astrophysics, Part I: Fundamentals and Practice (Springer, New York, 2006)Google Scholar
  30. B.V. Somov,Plasma Astrophysics, Part II: Reconnection and Flares (Springer, Berlin, 2007)Google Scholar
  31. S.I. Syrovatskii, Pinch sheets and reconnection in astrophysics. ARA&A 19, 163–229 (1981)ADSCrossRefGoogle Scholar
  32. I.N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (D. Reidel, Dordrecht, 1985)CrossRefGoogle Scholar
  33. I.N. Toptygin, Influence of accelerated particles on the large-scale magnetic field in young supernova remnants. Astron. Lett.30, 393–403 (2004)ADSCrossRefGoogle Scholar
  34. S.I. Vainshtein, A.M. Bykov, I.N. Toptygin,Turbulence, Current Sheets, and Shocks in Cosmic Plasma (Gordon and Breach Science Publishers, New York, 1993)Google Scholar
  35. G.B. Whitham,Linear and Nonlinear Waves (Wiley, New York, 1974)Google Scholar
  36. S.E. Woosley, J.S. Bloom, The supernova gamma-ray burst connection. ARA&A 44, 507–556 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gregory D. Fleishman
    • 1
  • Igor N. Toptygin
    • 2
  1. 1.Center for Solar-Terrestrial Research New Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of Theoretical PhysicsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations