Skip to main content

Nonlinear MHD Waves and Discontinuities

  • Chapter
  • First Online:
  • 1830 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 388))

Abstract

Linear waves considered in Chap. 2 describe perturbations with small amplitudes. In the astrophysical conditions, however, a strong energy release gives often rise to large-amplitude perturbations, which cannot be fully accommodated by the linear theory and so require non-linear treatment. In this chapter we consider a number of important examples of the nonlinear waves—simple waves, solitons, and discontinuities—with the use of exact or approximate analytical methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is derived as follows:

    $$Tc_{V }^{-1}=(\partial _{s}T)_{ V =1/\rho }=(\partial _{s}T)_{\rho }=\frac{\partial (s,p)} {\partial (s,\rho )} \frac{\partial (T,\rho )} {\partial (s,p)} =(\partial _{\rho }p)_{s}[(\partial _{s}T)_{p}(\partial _{p}\rho )_{s}-(\partial _{p}T)_{s}(\partial _{s}\rho )_{p}] =Tc_{P}^{-1}-(\partial _{\rho }p)_{s}(\partial _{p}T)_{s}(\partial _{s}\rho )_{p}.$$
  2. 2.

    The structure of shock waves in a dense high-temperature plasma was studied by Imshennik and Bobrova (1997).

References

  • M.J. Aschwanden,Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. (Springer, Berlin, 2005)

    Google Scholar 

  • A. Benz (ed.), Plasma astrophysics, 2nd edn., Astrophysics and Space Science Library, vol. 279 (Kluwer, Dordrecht, 2002)

    Google Scholar 

  • G.S. Bisnovatyi-Kogan, S.A. Silich, Shock-wave propagation in the nonuniform interstellar medium. Rev. Mod. Phys. 67, 661–712 (1995)

    Article  ADS  Google Scholar 

  • R.D. Blandford, C.F. McKee, Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130–1138 (1976)

    Article  ADS  MATH  Google Scholar 

  • S.I. Blinnikov, V.S. Imshennik, V.P. Utrobin, The cygnus superbubble as the remnant of a peculiar supernova. Soviet Astron. Lett. 8, 361–365 (1982)

    ADS  Google Scholar 

  • A.V. Filippenko, Optical spectra of supernovae. ARA&A 35, 309–355 (1997)

    Article  ADS  Google Scholar 

  • D.E. Gary, C.U. Keller (eds.), Solar and space weather radiophysics - current status and future developments, Astrophysics and Space Science Library, vol. 314 (Kluwer, Dordrecht, 2004)

    Google Scholar 

  • S.N. Gurbatov, A.I. Saichev, I.G. Iakushkin, Nonlinear waves and one-dimensional turbulence in nondispersive media. Soviet Phys. Uspekhi 141, 221–255 (1983)

    Article  ADS  Google Scholar 

  • A.V. Gurevich, L.P. Pitaevskii, Decay of initial discontinuity in the Korteweg-de Vries equation. Soviet J. Exp. Theor. Phys. Lett. 17, 193 (1973)

    Google Scholar 

  • A.V. Gurevich, L.P. Pitaevskii, An averaged description of waves in the Kortweg-de Vries-Burgers equation. Zhurnal Eksperimental noi i Teoreticheskoi Fiziki93, 871–880 (1987)

    MathSciNet  ADS  Google Scholar 

  • A.J. Hundhausen, Coronal Expansion and Solar Wind (Springer, Berlin, 1972)

    Book  Google Scholar 

  • V.S. Imshennik, N.A. Bobrova, Dynamics of Collision Plasmas [in Russian] (Energoatomizdat, Moscow, 1997)

    Google Scholar 

  • V.S. Imshennik, D.K. Nadezhin, Supernova 1987A in the Large Magellanic Cloud: Observations and Theory (Harwood Academic Publishers, Amsterdam, 1989)

    Google Scholar 

  • A.S. Kompaneets, A point explosion in an inhomogeneous atmosphere. Soviet Phys. Dokl. 5., 46 (1960)

    Google Scholar 

  • V.P. Korobeinikov, Problem of strong point explosion in a gas with zero temperature gradient. Dokl. Akad. Nauk SSSR109, 271–273 (1956)

    Google Scholar 

  • D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Phil. Mag.39, 422–443 (1895)

    MATH  Google Scholar 

  • L.D. Landau, E.M. Lifshitz,Hydrodynamik (Akademie-Verlag, Berlin, 1966)

    Google Scholar 

  • T.A. Lozinskaya, Supernovae and Stellar Wind in the Interstellar Medium (American Institute of Physics, New York, 1992)

    Google Scholar 

  • M.M. Mac Low, R. McCray, Superbubbles in disk galaxies. ApJ 324, 776–785 (1988)

    Article  ADS  Google Scholar 

  • M.M. Mac Low, R. McCray, M.L. Norman, Superbubble blowout dynamics. ApJ 337, 141–154 (1989)

    Article  ADS  Google Scholar 

  • D.K. Nadyozhin, V.S. Imshennik, Physics of supernovae. Int. J. Mod. Phys. A 20, 6597–6611 (2005)

    Article  ADS  Google Scholar 

  • E. Priest, T. Forbes,Magnetic Reconnection (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  • A.A. Ruzmaikin, D.D. Sokolov, A.M. Shukurov (eds.), Magnetic fields of galaxies. Astrophysics and Space Science Library, vol. 133 (Kluwer, Dordrecht, 1988)

    Google Scholar 

  • R.Z. Sagdeev, Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 23 (1966)

    ADS  Google Scholar 

  • L.I. Sedov, Metody Podobiya i Razmernosti v Mekhanike [in Russian] (Nauka, Moscow, 1987)

    Google Scholar 

  • I.S. Shklovskij,Supernovae and Problems Connected With Them [in Russian] (Nauka, Moskva, 1976)

    Google Scholar 

  • S.J. Smartt, Progenitors of core-collapse supernovae. ARA&A 47, 63–106 (2009)

    Article  ADS  Google Scholar 

  • A. Solinger, J. Buff, S. Rappaport, Isothermal blast wave model of supernova remnants. ApJ 201, 381–386 (1975)

    Article  ADS  Google Scholar 

  • B.V. Somov, Plasma Astrophysics, Part I: Fundamentals and Practice (Springer, New York, 2006)

    Google Scholar 

  • B.V. Somov,Plasma Astrophysics, Part II: Reconnection and Flares (Springer, Berlin, 2007)

    Google Scholar 

  • S.I. Syrovatskii, Pinch sheets and reconnection in astrophysics. ARA&A 19, 163–229 (1981)

    Article  ADS  Google Scholar 

  • I.N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (D. Reidel, Dordrecht, 1985)

    Book  Google Scholar 

  • I.N. Toptygin, Influence of accelerated particles on the large-scale magnetic field in young supernova remnants. Astron. Lett.30, 393–403 (2004)

    Article  ADS  Google Scholar 

  • S.I. Vainshtein, A.M. Bykov, I.N. Toptygin,Turbulence, Current Sheets, and Shocks in Cosmic Plasma (Gordon and Breach Science Publishers, New York, 1993)

    Google Scholar 

  • G.B. Whitham,Linear and Nonlinear Waves (Wiley, New York, 1974)

    Google Scholar 

  • S.E. Woosley, J.S. Bloom, The supernova gamma-ray burst connection. ARA&A 44, 507–556 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fleishman, G.D., Toptygin, I.N. (2013). Nonlinear MHD Waves and Discontinuities. In: Cosmic Electrodynamics. Astrophysics and Space Science Library, vol 388. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5782-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5782-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5781-7

  • Online ISBN: 978-1-4614-5782-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics