Advertisement

Ultrarelativistic Component of Astrophysical Plasmas

  • Gregory D. Fleishman
  • Igor N. Toptygin
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 388)

Abstract

We have already noted in many places throughout the book that the very dynamics of astrophysical plasma often results in production of an ultrarelativistic plasma component on top of nonrelativistic background plasma or drives the entire plasma to an ultrarelativistic state. A vivid example of the first option is the galactic and extragalactic (ultra-high-energy) cosmic rays (CRs), while the latter one includes ultrarelativistic pulsar winds or jets and shock waves in active galactic nuclei (AGN) and GRBs. Physics of such ultrarelativistic plasmas represents an extremely broad, highly dynamic, and rapidly developing field of the modern astrophysics, which is hardly possible to comprehensively describe within a textbook format. Nevertheless, below we attempt to present some basic ideas and selected results having in mind to (1) introduce current concepts related to the ultrarelativistic plasma components and (2) demonstrate that the general theoretical framework developed within the cosmic electrodynamics is fully applicable here as well as to traditional nonrelativistic cases.

Keywords

Neutron Star Accelerate Particle Strong Turbulence Crab Nebula Crab Pulsar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. M. Abramowitz, I.A. Stegun, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th dover printing, 10th gpo printing edn. (Dover, New York, 1964)Google Scholar
  2. H. Alfvén, N. Herlofson, Cosmic radiation and radio stars. Phys. Rev.78, 616–616 (1950)ADSCrossRefGoogle Scholar
  3. G.E. Allen, J.C. Houck, S.J. Sturner, Evidence of a curved synchrotron spectrum in the supernova remnant SN 1006. ApJ 683, 773–785 (2008)ADSCrossRefGoogle Scholar
  4. J. Arons, Theory of pulsar winds, in ASP Conference Series 271: Neutron Stars in Supernova Remnants, p. 71 (2002)Google Scholar
  5. A.M. Atoyan, Radio spectrum of the crab nebula as an evidence for fast initial spin of its pulsar. A&A 346, L49–L52 (1999)ADSGoogle Scholar
  6. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS  353, 550–558 (2004)ADSCrossRefGoogle Scholar
  7. A.R. Bell, S.G. Lucek, Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. MNRAS 321, 433–438 (2001)ADSCrossRefGoogle Scholar
  8. V.B. Berestetskii, E.M. Lifshits, L.P. Pitaevskii,Quantum Electrodynamics, vol. 4 (Pergamon Press, Oxford, 1982)Google Scholar
  9. E.G. Berezhko, L.T. Ksenofontov, H.J. Völk, Confirmation of strong magnetic field amplification and nuclear cosmic ray acceleration in SN 1006. A&A 412, L11–L14 (2003)ADSCrossRefGoogle Scholar
  10. E.G. Berezhko, G. Pühlhofer, H.J. Völk, Theory of cosmic ray and γ-ray production in the supernova remnant RX J0852.0-4622. A&A 505, 641–654 (2009)Google Scholar
  11. V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.S. Ptuskin, Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990)Google Scholar
  12. V.S. Beskin,MHD Flows in Compact Astrophysical Objects: Accretion, Winds and Jets (Springer, Berlin, 2009b)Google Scholar
  13. V.S. Beskin, A.V. Gurevich, Y.N. Istomin, Physics of the Pulsar Magnetosphere (Cambridge University Press, Cambridge, 1993)zbMATHGoogle Scholar
  14. M.F. Bietenholz, D.A. Frail, J.J. Hester, The crab nebula’s moving wisps in radio. ApJ 560, 254–260 (2001)ADSCrossRefGoogle Scholar
  15. M.F. Bietenholz, J.J. Hester, D.A. Frail, N. Bartel, The crab nebula’s wisps in radio and optical. ApJ 615, 794–804 (2004)ADSCrossRefGoogle Scholar
  16. A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. MNRAS 410, 39–52 (2011)ADSCrossRefGoogle Scholar
  17. A.M. Bykov, I. Toptygin, Reviews of topical problems: instabilities of a multicomponent plasma with accelerated particles and magnetic field generation in astrophysical objects. Physics Uspekhi50, 141–174 (2007)ADSCrossRefGoogle Scholar
  18. V.N. Fedorenko, G.D. Fleishman, Enhancement of hydromagnetic turbulence near a shock wave front and the limiting energies of particles accelerated in supernova remnants. Soviet Astron. 32, 398 (1988)ADSzbMATHGoogle Scholar
  19. G.D. Fleishman, M.F. Bietenholz, Diffusive synchrotron radiation from pulsar wind nebulae. MNRAS 376, 625–633 (2007)ADSCrossRefGoogle Scholar
  20. X.Y. Gao, J.L. Han, W. Reich, P. Reich, X.H. Sun, L. Xiao, A Sino-German λ6 cm polarization survey of the galactic plane. V. Large supernova remnants. A&A529, A159 (2011)Google Scholar
  21. V.L. Ginzburg,Theoretical Physics and Astrophysics, 3rd revised and enlarged edn. [in Russian] (Izdatel Nauka, Moscow, 1987)Google Scholar
  22. V.L. Ginzburg, S.I. Syrovatskii,The Origin of Cosmic Rays (Macmillan, New York, 1964)Google Scholar
  23. P. Goldreich, W.H. Julian, Pulsar electrodynamics. ApJ 157, 869 (1969)CrossRefGoogle Scholar
  24. P. Haensel, A.Y. Potekhin, D.G. Yakovlev (eds.), Neutron stars 1 : equation of state and structure. Astrophysics and Space Science Library, vol. 326 (Springer, New York, 2007)Google Scholar
  25. S. Hayakawa, Cosmic Ray Physics. Part_2. Astrophysical Aspects (Mir, Moskva, 1974)Google Scholar
  26. J.J. Hester, J.M. Stone, P.A. Scowen, B. Jun, J.S. Gallagher, M.L. Norman, G.E. Ballester, C.J. Burrows, S. Casertano, J.T. Clarke, D. Crisp, R.E. Griffiths, J.G. Hoessel, J.A. Holtzman, J. Krist, J.R. Mould, R. Sankrit, K.R. Stapelfeldt, J.T. Trauger, A. Watson, J.A. Westphal, WFPC2 studies of the crab nebula. III. Magnetic Rayleigh-Taylor instabilities and the origin of the filaments. ApJ 456, 225 (1996)Google Scholar
  27. Y.N. Istomin, Conferences and symposia: electron-positron plasma generation in the magnetospheres of neutron stars. Physics Uspekhi 51, 844–848 (2008)ADSGoogle Scholar
  28. C.F. Kennel, F.V. Coroniti, Confinement of the crab pulsar’s wind by its supernova remnant. ApJ 283, 694–709 (1984a)ADSCrossRefGoogle Scholar
  29. C.F. Kennel, F.V. Coroniti, Magnetohydrodynamic model of crab nebula radiation. ApJ 283, 710–730 (1984b)ADSCrossRefGoogle Scholar
  30. K.O. Kiepenheuer, Cosmic rays as the source of general galactic radio emission. Phys. Rev.79, 738–739 (1950)ADSCrossRefGoogle Scholar
  31. P.O. Lagage, C.J. Cesarsky, The maximum energy of cosmic rays accelerated by supernova shocks. A&A 125, 249–257 (1983)ADSzbMATHGoogle Scholar
  32. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. Journ. Geo. Res. 88, 6109–6119 (1983)ADSCrossRefGoogle Scholar
  33. M.S. Longair, High Energy Astrophysics (Cambridge University Press, Cambridge, 1981)Google Scholar
  34. R.N. Manchester, J.H. Taylor,Pulsars (W. H. Freeman, San Francisco, 1977)Google Scholar
  35. H.L. Marshall, D.E. Harris, J.P. Grimes, J.J. Drake, A. Fruscione, M. Juda, R.P. Kraft, S. Mathur, S.S. Murray, P.M. Ogle, D.O. Pease, D.A. Schwartz, A.L. Siemiginowska, S.D. Vrtilek, B.J. Wargelin, Structure of the X-ray emission from the Jet of 3C 273. ApJ 549, L167–L171 (2001)ADSCrossRefGoogle Scholar
  36. K. Mori, J.J. Hester, D.N. Burrows, G.G. Pavlov, H. Tsunemi, Chandra Reveals the Dynamic Structure of the Inner Crab Nebula, inASP Conference Series 271: Neutron Stars in Supernova Remnants, p. 157 (2002)Google Scholar
  37. V.S. Murzin,Astrofizika Kosmicheskikh Luchei [in Russian] (Logos, Moscow, 2007)Google Scholar
  38. A.Y. Potekhin, The physics of neutron stars. Physics Uspekhi53, 1235–1256 (2010)ADSCrossRefGoogle Scholar
  39. R.D. Preece, M.S. Briggs, R.S. Mallozzi, G.N. Pendleton, W.S. Paciesas, D.L. Band, The BATSE gamma-ray burst spectral catalog. I. High time resolution spectroscopy of bright bursts using high energy resolution data. ApJS 126, 19–36 (2000)Google Scholar
  40. V.S. Ptuskin, Conferences and symposia the origin of cosmic rays. Physics Uspekhi 53, 958–961 (2010)ADSCrossRefGoogle Scholar
  41. B. Reville, A.R. Bell, A filamentation instability for streaming cosmic rays. MNRAS 419, 2433–2440 (2012)ADSCrossRefGoogle Scholar
  42. S.L. Shapiro, S.A. Teukolsky,Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley-Interscience, New York, 1983)Google Scholar
  43. D. ter Haar, Pulsars. Phys. Rep. 3 (1972)Google Scholar
  44. J. Vink, Supernova remnants: the X-ray perspective. ArXiv e-print 1112.0576. AAPR vol. 20, pp. 49 (2012). doi 10.1007/s00159-011-0049-1. http://adsabs.harvard.edu/abs/2012A%26ARv..20...49V. Provided by the SAO/NASA Astrophysics Data System
  45. A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks. ApJ 703, L29–L32 (2009)ADSCrossRefGoogle Scholar
  46. D.G. Wentzel, Hydromagnetic waves excited by slowly streaming cosmic rays. ApJ 152, 987 (1968)ADSCrossRefGoogle Scholar
  47. D.G. Yakovlev, K.P. Levenfish, Y.A. Shibanov, Reviews of topical problems: cooling of neutron stars and superfluidity in their cores. Physics Uspekhi42, 737–778 (1999)ADSCrossRefGoogle Scholar
  48. V.N. Zirakashvili, V.S. Ptuskin, Diffusive shock acceleration with magnetic amplification by nonresonant streaming instability in supernova remnants. ApJ 678, 939–949 (2008)ADSCrossRefGoogle Scholar
  49. V.N. Zirakashvili, V.S. Ptuskin, H.J. Völk, Modeling Bell’s nonresonant cosmic-ray instability. ApJ 678, 255–261 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gregory D. Fleishman
    • 1
  • Igor N. Toptygin
    • 2
  1. 1.Center for Solar-Terrestrial Research New Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of Theoretical PhysicsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations