Advertisement

Particle Acceleration in Astrophysical Media

  • Gregory D. Fleishman
  • Igor N. Toptygin
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 388)

Abstract

In the laboratory, the particles with high to very high energy (\(\mathcal{E}\gg m{c}^{2}\)) are obtained by means of extremely sophisticated devices. One of many examples is large Hadron collider (LHC) recently commissioned in Europe. These specially designed accelerating devices are needed because high-energy particles lose their energy very quickly due to interaction with matter and external fields and, thus, become thermally assimilated by the medium.

Keywords

Solar Wind Compression Ratio Spectral Index Shock Front Solar Flare 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. V.I. Abramenko, T. Wang, V.B. Yurchishin, Analysis of electric current helicity in active regions on the basis of vector magnetograms. Solar Phys. 168, 75–89 (1996)ADSCrossRefGoogle Scholar
  2. V.I. Abramenko, T. Wang, V.B. Yurchishin, Electric current helicity in 40 active regions in the maximum of solar cycle 22. Solar Phys. 174, 291–296 (1997)ADSCrossRefGoogle Scholar
  3. M. Abramowitz, I.A. Stegun, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th dover printing, 10th gpo printing edn. (Dover, New York, 1964)Google Scholar
  4. H. Alfven, C.G. Fälthammar, Cosmical Electrodynamics. Fundamental Principles (Clarendon Press, Oxford, 1963)Google Scholar
  5. A.T. Altyntsev, G.D. Fleishman, G.L. Huang, V.F. Melnikov, A broadband microwave burst produced by electron beams. ApJ 677, 1367–1377 (2008)ADSCrossRefGoogle Scholar
  6. A.T. Altyntsev, V.V. Grechnev, N.S. Meshalkina, Y. Yan, Microwave type III-like bursts as possible signatures of magnetic reconnection. Solar Phys. 242, 111–123 (2007)ADSCrossRefGoogle Scholar
  7. M.J. Aschwanden,Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. (Springer, Berlin, 2005)Google Scholar
  8. M.J. Aschwanden, A.O. Benz, S.R. Kane, Correlation of solar radio pulsations with hard X-ray emission. A&A 229, 206–215 (1990)ADSGoogle Scholar
  9. M.J. Aschwanden, M.J. Wills, H.S. Hudson, T. Kosugi, R.A. Schwartz, Electron time-of-flight distances and flare loop geometries compared from CGRO and YOHKOH observations. ApJ 468, 398 (1996)ADSCrossRefGoogle Scholar
  10. W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in International Cosmic Ray Conference, vol. 11, pp. 132–137 (1977)Google Scholar
  11. T.S. Bastian, G.D. Fleishman, D.E. Gary, Radio spectral evolution of an X-Ray-poor impulsive solar flare: implications for plasma heating and electron acceleration. ApJ 666, 1256–1267 (2007)ADSCrossRefGoogle Scholar
  12. M. Battaglia, A.O. Benz, Relations between concurrent hard X-ray sources in solar flares. A&A 456, 751–760 (2006)ADSCrossRefGoogle Scholar
  13. A.R. Bell, The acceleration of cosmic rays in shock fronts. I. MNRAS 182, 147–156 (1978)ADSGoogle Scholar
  14. R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. ApJ  221, L29–L32 (1978)ADSCrossRefGoogle Scholar
  15. S.A. Bogachev, B.V. Somov, Effect of coulomb collisions on the particle acceleration in collapsing magnetic traps. Astron. Lett.35, 57–69 (2009)ADSCrossRefGoogle Scholar
  16. A. Bykov, inNon-Thermal Electron Acceleration and GRB Spectral Evolution, ed. by J. Paul, T. Montmerle, E. Aubourg. 19th Texas Symposium on Relativistic Astrophysics and Cosmology (1998)Google Scholar
  17. A.M. Bykov, Particle acceleration and nonthermal phenomena in superbubbles. Space Sci. Rev. 99, 317–326 (2001)ADSCrossRefGoogle Scholar
  18. A.M. Bykov, G.D. Fleishman, On non-thermal particle generation in superbubbles. MNRAS 255, 269–275 (1992)ADSGoogle Scholar
  19. A.M. Bykov, G.D. Fleishman, Particle acceleration by strong turbulence in solar flares: theory of spectrum evolution. ApJ 692, L45–L49 (2009)ADSCrossRefGoogle Scholar
  20. A.M. Bykov, I. Toptygin, Reviews of topical problems: particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods). Physics Uspekhi 36, 1020–1052 (1993)ADSCrossRefGoogle Scholar
  21. L.I. Dorman, M.E. Kats, Y.I. Fedorov, B.A. Shakhov, Energy balance of cosmic rays in multiple scattering in a randomly inhomogeneous magnetic field. Soviet J. Exp. Theor. Phys. Lett. 27, 353 (1978)Google Scholar
  22. G.D. Fleishman, E.P. Kontar, G.M. Nita, D.E. Gary, A cold, tenuous solar flare: acceleration without heating. ApJ 731, L19 (2011)ADSCrossRefGoogle Scholar
  23. G.D. Fleishman, A.A. Kuznetsov, Fast gyrosynchrotron codes. ApJ721, 1127–1141 (2010)Google Scholar
  24. G.D. Fleishman, I.N. Toptygin, Stochastic particle acceleration by helical turbulence in solar flares, Provided by the SAO/NASA Astrophysics Data System, p. 447 (2013). doi 10.1093/mnras/sts518. http://adsabs.harvard.edu/abs/2013MNRAS.tmp..447F
  25. H.P. Furth, P.H. Rutherford, Ion runaway in tokamak discharges. Phys. Rev. Lett.28, 545–548 (1972)ADSCrossRefGoogle Scholar
  26. P. Giuliani, T. Neukirch, P. Wood, Particle motion in collapsing magnetic traps in solar flares. I. Kinematic theory of collapsing magnetic traps. ApJ 635, 636–646 (2005)Google Scholar
  27. K.J. Grady, T. Neukirch, An extension of the theory of kinematic MHD models of collapsing magnetic traps to 2.5D with shear flow and to 3D. ARA&A508, 1461–1468 (2009)Google Scholar
  28. P.C. Grigis, A.O. Benz, Electron acceleration in solar flares: theory of spectral evolution. ARA&A 458, 641–651 (2006)ADSzbMATHCrossRefGoogle Scholar
  29. P.C. Grigis, A.O. Benz, Spectral hardening in large solar flares. arXiv eprint 0708.2472. ApJ683, 1180–1191 (2008). doi 10.1086/589826. http://adsabs.harvard.edu/abs/2008ApJ...683.1180G. Provided by the SAO/NASA Astrophysics Data System
  30. A.V. Gurevich. Sov. Phys. JETP13, 1282 (1961)Google Scholar
  31. R.J. Hamilton, V. Petrosian, Stochastic acceleration of electrons. I - Effects of collisions in solar flares. ApJ 398, 350–358 (1992)Google Scholar
  32. G.D. Holman, DC electric field acceleration of ions in solar flares. ApJ 452, 451–+ (1995)Google Scholar
  33. G.J. Hurford, S. Krucker, R.P. Lin, R.A. Schwartz, G.H. Share, D.M. Smith, Gamma-ray imaging of the 2003 October/November solar flares. ApJ 644, L93–L96 (2006)ADSCrossRefGoogle Scholar
  34. K.S. Khodzhaev, A.G. Chirkov, S.D. Shatalov, Motion of a charged particle in crossed fields when the magnetic field is strongly inhomogeneous. J. Appl. Mech. Tech. Phys.22, 439–442 (1981)ADSCrossRefGoogle Scholar
  35. L.L. Kichatinov, New mechanism for acceleration of cosmic particles in the presence of reflectively noninvariant turbulence. Sov. Phys. JETP Lett. 37, 51 (1983)ADSGoogle Scholar
  36. A.L. Kiplinger, B.R. Dennis, K.J. Frost, L.E. Orwig, A.G. Emslie. Millisecond time variations in hard X-ray solar flares. ApJ 265, L99–L104 (1983)ADSCrossRefGoogle Scholar
  37. L.G. Kocharov, G.E. Kocharov, He-3-rich solar flares. Space Science Rev. 38, 89–141 (1984)ADSCrossRefGoogle Scholar
  38. S. Krucker, H.S. Hudson, L. Glesener, S.M. White, S. Masuda, J.P. Wuelser, R.P. Lin, Measurements of the coronal acceleration region of a solar flare. ApJ 714, 1108–1119 (2010)ADSCrossRefGoogle Scholar
  39. S. Krucker, R.P. Lin, Hard X-Ray emissions from partially occulted solar flares. ApJ 673, 1181–1187 (2008)ADSCrossRefGoogle Scholar
  40. G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Soviet Phys. Dokl. 22, 327 (1977)MathSciNetADSGoogle Scholar
  41. R.P. Lin, S. Krucker, G.J. Hurford, D.M. Smith, H.S. Hudson, G.D. Holman, R.A. Schwartz, B.R. Dennis, G.H. Share, R.J. Murphy, A.G. Emslie, C. Johns-Krull, N. Vilmer, RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. ApJ 595, L69–L76 (2003)ADSCrossRefGoogle Scholar
  42. D.W. Longcope, G.H. Fisher, A.A. Pevtsov, Flux-tube twist resulting from helical turbulence: the sigma-effect. ApJ 507, 417–432 (1998)ADSCrossRefGoogle Scholar
  43. G.M. Mason, 3 He-rich solar energetic particle events. Space Science Rev. 130, 231–242 (2007)Google Scholar
  44. R.A. Maurya, A. Ambastha, V. Reddy, Kinetic and magnetic helicities in solar active regions. J. Phys. Con. Series 271(1), 012003 (2011)CrossRefGoogle Scholar
  45. F.B. McDonald, B.J. Teegarden, J.H. Trainor, T.T. von Rosenvinge, W.R. Webber, The interplanetary acceleration of energetic nucleons. ApJ203, L149–L154 (1976)Google Scholar
  46. V.F. Melnikov, K. Shibasaki, V.E. Reznikova, Loop-top nonthermal microwave source in extended solar flaring loops. ApJ 580, L185–L188 (2002b)ADSCrossRefGoogle Scholar
  47. J.A. Miller, P.J. Cargill, A.G. Emslie, G.D. Holman, B.R. Dennis, T.N. LaRosa, R.M. Winglee, S.G. Benka, S. Tsuneta, Critical issues for understanding particle acceleration in impulsive solar flares. Journ. Geo. Res. 102, 14631–14660 (1997)ADSCrossRefGoogle Scholar
  48. J.A. Miller, T.N. Larosa, R.L. Moore, Stochastic electron acceleration by cascading fast mode waves in impulsive solar flares. ApJ 461, 445–+ (1996)Google Scholar
  49. Qiu, J. and Gary, D. E. and Fleishman, G. D., Evaluating Mean Magnetic Field in Flare Loops, solphys Provided by the SAO/NASA Astrophysics Data System,255, pp. 107–118 (2009) doi: 10.1007/s11207-009-9316-y. http://adsabs.harvard.edu/abs/2009SoPh..255..107Q
  50. B.V. Somov, Plasma Astrophysics, Part I: Fundamentals and Practice (Springer, New York, 2006)Google Scholar
  51. B.V. Somov, A.V. Oreshina, Magnetic reconnection and acceleration of particles on the sun. Bulletin of the Russian Academy of Science, Phys. 75, 735–737 (2011)Google Scholar
  52. I.N. Toptygin, Acceleration of particles by shocks in a cosmic plasma. Space Science Rev. 26, 157–213 (1980)ADSCrossRefGoogle Scholar
  53. I.N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (D. Reidel, Dordrecht, 1985)CrossRefGoogle Scholar
  54. I.N. Toptygin, Structure of a collisionless shock front with relativistically accelerated particles. Soviet J. Exp. Theor. Phys.85, 862–872 (1997)ADSCrossRefGoogle Scholar
  55. I.N. Toptygin, A self-similar solution for a supernova explosion with allowance for accelerated relativistic particles. Astron. Lett. 26, 356–361 (2000)ADSCrossRefGoogle Scholar
  56. B.A. Trubnikov, Particle interactions in a fully ionized plasma. Rev. Plasma Phys. 1, 105 (1965)ADSGoogle Scholar
  57. A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks. ApJ 703, L29–L32 (2009)ADSCrossRefGoogle Scholar
  58. L. Vlahos, A. Raoult, Beam fragmentation and type III bursts. A&A296, 844 (1995)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gregory D. Fleishman
    • 1
  • Igor N. Toptygin
    • 2
  1. 1.Center for Solar-Terrestrial Research New Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of Theoretical PhysicsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations