Skip to main content

Particle Acceleration in Astrophysical Media

  • Chapter
  • First Online:
Cosmic Electrodynamics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 388))

  • 1838 Accesses

Abstract

In the laboratory, the particles with high to very high energy (\(\mathcal{E}\gg m{c}^{2}\)) are obtained by means of extremely sophisticated devices. One of many examples is large Hadron collider (LHC) recently commissioned in Europe. These specially designed accelerating devices are needed because high-energy particles lose their energy very quickly due to interaction with matter and external fields and, thus, become thermally assimilated by the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that in a purely electron–proton plasma the momentum conservation would imply a very small proton flow velocity \(\boldsymbol{v}_{p} = -(m_{e}/m_{p})\boldsymbol{v}_{e}\).

  2. 2.

    More realistic models, e.g., accounting the Coulomb collisions in the trap, are considered by Giuliani et al. (2005), Bogachev and Somov (2009) and Grady and Neukirch (2009).

  3. 3.

    In the end of this section we consider the case of helical turbulence where \(\langle \boldsymbol{\mathcal{F}}_{e }\rangle \neq {\prime }\).

  4. 4.

    Recall, Sect. 2.5, most of active stars have a stellar wind with \(u_{1} \approx (2\mbox{ \textendash }3) \times 1{0}^{8}\) cm/s, r 0 ≈ 3–10 pc \(\approx 1{0}^{19} - 3 \times 1{0}^{20}\) cm. The solar wind has much more modest parameters: \(u_{1} \approx 4 \times 1{0}^{7}\) cm/s, r 0 ≈ 90 au  ≈ 1. 4 ×1015 cm, see Sect. 2.5.1.

  5. 5.

    We note here that the relative velocity of two bodies can exceed the speed of light c in some inertial reference frame.

References

  • V.I. Abramenko, T. Wang, V.B. Yurchishin, Analysis of electric current helicity in active regions on the basis of vector magnetograms. Solar Phys. 168, 75–89 (1996)

    Article  ADS  Google Scholar 

  • V.I. Abramenko, T. Wang, V.B. Yurchishin, Electric current helicity in 40 active regions in the maximum of solar cycle 22. Solar Phys. 174, 291–296 (1997)

    Article  ADS  Google Scholar 

  • M. Abramowitz, I.A. Stegun, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th dover printing, 10th gpo printing edn. (Dover, New York, 1964)

    Google Scholar 

  • H. Alfven, C.G. Fälthammar, Cosmical Electrodynamics. Fundamental Principles (Clarendon Press, Oxford, 1963)

    Google Scholar 

  • A.T. Altyntsev, G.D. Fleishman, G.L. Huang, V.F. Melnikov, A broadband microwave burst produced by electron beams. ApJ 677, 1367–1377 (2008)

    Article  ADS  Google Scholar 

  • A.T. Altyntsev, V.V. Grechnev, N.S. Meshalkina, Y. Yan, Microwave type III-like bursts as possible signatures of magnetic reconnection. Solar Phys. 242, 111–123 (2007)

    Article  ADS  Google Scholar 

  • M.J. Aschwanden,Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. (Springer, Berlin, 2005)

    Google Scholar 

  • M.J. Aschwanden, A.O. Benz, S.R. Kane, Correlation of solar radio pulsations with hard X-ray emission. A&A 229, 206–215 (1990)

    ADS  Google Scholar 

  • M.J. Aschwanden, M.J. Wills, H.S. Hudson, T. Kosugi, R.A. Schwartz, Electron time-of-flight distances and flare loop geometries compared from CGRO and YOHKOH observations. ApJ 468, 398 (1996)

    Article  ADS  Google Scholar 

  • W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in International Cosmic Ray Conference, vol. 11, pp. 132–137 (1977)

    Google Scholar 

  • T.S. Bastian, G.D. Fleishman, D.E. Gary, Radio spectral evolution of an X-Ray-poor impulsive solar flare: implications for plasma heating and electron acceleration. ApJ 666, 1256–1267 (2007)

    Article  ADS  Google Scholar 

  • M. Battaglia, A.O. Benz, Relations between concurrent hard X-ray sources in solar flares. A&A 456, 751–760 (2006)

    Article  ADS  Google Scholar 

  • A.R. Bell, The acceleration of cosmic rays in shock fronts. I. MNRAS 182, 147–156 (1978)

    ADS  Google Scholar 

  • R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. ApJ  221, L29–L32 (1978)

    Article  ADS  Google Scholar 

  • S.A. Bogachev, B.V. Somov, Effect of coulomb collisions on the particle acceleration in collapsing magnetic traps. Astron. Lett.35, 57–69 (2009)

    Article  ADS  Google Scholar 

  • A. Bykov, inNon-Thermal Electron Acceleration and GRB Spectral Evolution, ed. by J. Paul, T. Montmerle, E. Aubourg. 19th Texas Symposium on Relativistic Astrophysics and Cosmology (1998)

    Google Scholar 

  • A.M. Bykov, Particle acceleration and nonthermal phenomena in superbubbles. Space Sci. Rev. 99, 317–326 (2001)

    Article  ADS  Google Scholar 

  • A.M. Bykov, G.D. Fleishman, On non-thermal particle generation in superbubbles. MNRAS 255, 269–275 (1992)

    ADS  Google Scholar 

  • A.M. Bykov, G.D. Fleishman, Particle acceleration by strong turbulence in solar flares: theory of spectrum evolution. ApJ 692, L45–L49 (2009)

    Article  ADS  Google Scholar 

  • A.M. Bykov, I. Toptygin, Reviews of topical problems: particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods). Physics Uspekhi 36, 1020–1052 (1993)

    Article  ADS  Google Scholar 

  • L.I. Dorman, M.E. Kats, Y.I. Fedorov, B.A. Shakhov, Energy balance of cosmic rays in multiple scattering in a randomly inhomogeneous magnetic field. Soviet J. Exp. Theor. Phys. Lett. 27, 353 (1978)

    Google Scholar 

  • G.D. Fleishman, E.P. Kontar, G.M. Nita, D.E. Gary, A cold, tenuous solar flare: acceleration without heating. ApJ 731, L19 (2011)

    Article  ADS  Google Scholar 

  • G.D. Fleishman, A.A. Kuznetsov, Fast gyrosynchrotron codes. ApJ721, 1127–1141 (2010)

    Google Scholar 

  • G.D. Fleishman, I.N. Toptygin, Stochastic particle acceleration by helical turbulence in solar flares, Provided by the SAO/NASA Astrophysics Data System, p. 447 (2013). doi 10.1093/mnras/sts518. http://adsabs.harvard.edu/abs/2013MNRAS.tmp..447F

  • H.P. Furth, P.H. Rutherford, Ion runaway in tokamak discharges. Phys. Rev. Lett.28, 545–548 (1972)

    Article  ADS  Google Scholar 

  • P. Giuliani, T. Neukirch, P. Wood, Particle motion in collapsing magnetic traps in solar flares. I. Kinematic theory of collapsing magnetic traps. ApJ 635, 636–646 (2005)

    Google Scholar 

  • K.J. Grady, T. Neukirch, An extension of the theory of kinematic MHD models of collapsing magnetic traps to 2.5D with shear flow and to 3D. ARA&A508, 1461–1468 (2009)

    Google Scholar 

  • P.C. Grigis, A.O. Benz, Electron acceleration in solar flares: theory of spectral evolution. ARA&A 458, 641–651 (2006)

    Article  ADS  MATH  Google Scholar 

  • P.C. Grigis, A.O. Benz, Spectral hardening in large solar flares. arXiv eprint 0708.2472. ApJ683, 1180–1191 (2008). doi 10.1086/589826. http://adsabs.harvard.edu/abs/2008ApJ...683.1180G. Provided by the SAO/NASA Astrophysics Data System

  • A.V. Gurevich. Sov. Phys. JETP13, 1282 (1961)

    Google Scholar 

  • R.J. Hamilton, V. Petrosian, Stochastic acceleration of electrons. I - Effects of collisions in solar flares. ApJ 398, 350–358 (1992)

    Google Scholar 

  • G.D. Holman, DC electric field acceleration of ions in solar flares. ApJ 452, 451–+ (1995)

    Google Scholar 

  • G.J. Hurford, S. Krucker, R.P. Lin, R.A. Schwartz, G.H. Share, D.M. Smith, Gamma-ray imaging of the 2003 October/November solar flares. ApJ 644, L93–L96 (2006)

    Article  ADS  Google Scholar 

  • K.S. Khodzhaev, A.G. Chirkov, S.D. Shatalov, Motion of a charged particle in crossed fields when the magnetic field is strongly inhomogeneous. J. Appl. Mech. Tech. Phys.22, 439–442 (1981)

    Article  ADS  Google Scholar 

  • L.L. Kichatinov, New mechanism for acceleration of cosmic particles in the presence of reflectively noninvariant turbulence. Sov. Phys. JETP Lett. 37, 51 (1983)

    ADS  Google Scholar 

  • A.L. Kiplinger, B.R. Dennis, K.J. Frost, L.E. Orwig, A.G. Emslie. Millisecond time variations in hard X-ray solar flares. ApJ 265, L99–L104 (1983)

    Article  ADS  Google Scholar 

  • L.G. Kocharov, G.E. Kocharov, He-3-rich solar flares. Space Science Rev. 38, 89–141 (1984)

    Article  ADS  Google Scholar 

  • S. Krucker, H.S. Hudson, L. Glesener, S.M. White, S. Masuda, J.P. Wuelser, R.P. Lin, Measurements of the coronal acceleration region of a solar flare. ApJ 714, 1108–1119 (2010)

    Article  ADS  Google Scholar 

  • S. Krucker, R.P. Lin, Hard X-Ray emissions from partially occulted solar flares. ApJ 673, 1181–1187 (2008)

    Article  ADS  Google Scholar 

  • G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Soviet Phys. Dokl. 22, 327 (1977)

    MathSciNet  ADS  Google Scholar 

  • R.P. Lin, S. Krucker, G.J. Hurford, D.M. Smith, H.S. Hudson, G.D. Holman, R.A. Schwartz, B.R. Dennis, G.H. Share, R.J. Murphy, A.G. Emslie, C. Johns-Krull, N. Vilmer, RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. ApJ 595, L69–L76 (2003)

    Article  ADS  Google Scholar 

  • D.W. Longcope, G.H. Fisher, A.A. Pevtsov, Flux-tube twist resulting from helical turbulence: the sigma-effect. ApJ 507, 417–432 (1998)

    Article  ADS  Google Scholar 

  • G.M. Mason, 3 He-rich solar energetic particle events. Space Science Rev. 130, 231–242 (2007)

    Google Scholar 

  • R.A. Maurya, A. Ambastha, V. Reddy, Kinetic and magnetic helicities in solar active regions. J. Phys. Con. Series 271(1), 012003 (2011)

    Article  Google Scholar 

  • F.B. McDonald, B.J. Teegarden, J.H. Trainor, T.T. von Rosenvinge, W.R. Webber, The interplanetary acceleration of energetic nucleons. ApJ203, L149–L154 (1976)

    Google Scholar 

  • V.F. Melnikov, K. Shibasaki, V.E. Reznikova, Loop-top nonthermal microwave source in extended solar flaring loops. ApJ 580, L185–L188 (2002b)

    Article  ADS  Google Scholar 

  • J.A. Miller, P.J. Cargill, A.G. Emslie, G.D. Holman, B.R. Dennis, T.N. LaRosa, R.M. Winglee, S.G. Benka, S. Tsuneta, Critical issues for understanding particle acceleration in impulsive solar flares. Journ. Geo. Res. 102, 14631–14660 (1997)

    Article  ADS  Google Scholar 

  • J.A. Miller, T.N. Larosa, R.L. Moore, Stochastic electron acceleration by cascading fast mode waves in impulsive solar flares. ApJ 461, 445–+ (1996)

    Google Scholar 

  • Qiu, J. and Gary, D. E. and Fleishman, G. D., Evaluating Mean Magnetic Field in Flare Loops, solphys Provided by the SAO/NASA Astrophysics Data System,255, pp. 107–118 (2009) doi: 10.1007/s11207-009-9316-y. http://adsabs.harvard.edu/abs/2009SoPh..255..107Q

  • B.V. Somov, Plasma Astrophysics, Part I: Fundamentals and Practice (Springer, New York, 2006)

    Google Scholar 

  • B.V. Somov, A.V. Oreshina, Magnetic reconnection and acceleration of particles on the sun. Bulletin of the Russian Academy of Science, Phys. 75, 735–737 (2011)

    Google Scholar 

  • I.N. Toptygin, Acceleration of particles by shocks in a cosmic plasma. Space Science Rev. 26, 157–213 (1980)

    Article  ADS  Google Scholar 

  • I.N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (D. Reidel, Dordrecht, 1985)

    Book  Google Scholar 

  • I.N. Toptygin, Structure of a collisionless shock front with relativistically accelerated particles. Soviet J. Exp. Theor. Phys.85, 862–872 (1997)

    Article  ADS  Google Scholar 

  • I.N. Toptygin, A self-similar solution for a supernova explosion with allowance for accelerated relativistic particles. Astron. Lett. 26, 356–361 (2000)

    Article  ADS  Google Scholar 

  • B.A. Trubnikov, Particle interactions in a fully ionized plasma. Rev. Plasma Phys. 1, 105 (1965)

    ADS  Google Scholar 

  • A.E. Vladimirov, A.M. Bykov, D.C. Ellison, Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks. ApJ 703, L29–L32 (2009)

    Article  ADS  Google Scholar 

  • L. Vlahos, A. Raoult, Beam fragmentation and type III bursts. A&A296, 844 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fleishman, G.D., Toptygin, I.N. (2013). Particle Acceleration in Astrophysical Media. In: Cosmic Electrodynamics. Astrophysics and Space Science Library, vol 388. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5782-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5782-4_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5781-7

  • Online ISBN: 978-1-4614-5782-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics