Radiation Transfer

  • Gregory D. Fleishman
  • Igor N. Toptygin
Part of the Astrophysics and Space Science Library book series (ASSL, volume 388)


While propagating through a medium the electromagnetic radiation changes due to emission, absorption, scattering, and nonlinear wave transformations; thus, the radiation intensity, spectral distribution, polarization, and directivity can all vary in space and time. The theory of radiation transfer represents a broad field of the physics with numerous astrophysical applications (Chandrasekhar 1961;Mihalas 1978;Dolginov etal.1979;Ginzburg 1987; Nagirner 2007a), including radiation transfer in stellar interiors, Faraday rotation in intergalactic and interstellar media, group delay in solar corona, and many more. This chapter considers the most fundamental elements of the radiation transfer theory and gives a few examples of its application to the space plasma.


Brightness Temperature Radio Emission Plasma Wave Faraday Rotation Stokes Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. T.S. Bastian, A.O. Benz, D.E. Gary, Radio emission from solar flares. ARA&A 36, 131–188 (1998)ADSCrossRefGoogle Scholar
  2. T.S. Bastian, J. Bookbinder, G.A. Dulk, M. Davis, Dynamic spectra of radio bursts from flare stars. ApJ 353, 265–273 (1990)ADSCrossRefGoogle Scholar
  3. T.S. Bastian, G.D. Fleishman, D.E. Gary, Radio spectral evolution of an X-Ray-poor impulsive solar flare: implications for plasma heating and electron acceleration. ApJ 666, 1256–1267 (2007)ADSCrossRefGoogle Scholar
  4. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961)zbMATHGoogle Scholar
  5. G.T. Delory, R.E. Ergun, C.W. Carlson, L. Muschietti, C.C. Chaston, W. Peria, J.P. McFadden, R. Strangeway, FAST observations of electron distributions within AKR source regions. Geophys. Res. Lett. 25, 2069–2072 (1998)ADSCrossRefGoogle Scholar
  6. A.Z. Dolginov, Y.N. Gnedin, N.A. Silant’ev, Propagation and Polarization of Radiation Through Cosmic Medium (Nauka, Moskva, 1979)Google Scholar
  7. G.A. Dulk, Radio emission from the sun and stars. ARA&A 23, 169–224 (1985)ADSCrossRefGoogle Scholar
  8. R.E. Ergun, C.W. Carlson, J.P. McFadden, G.T. Delory, R.J. Strangeway, P.L. Pritchett, Electron-cyclotron maser driven by charged-particle acceleration from magnetic field-aligned electric fields. ApJ 538, 456–466 (2000)ADSCrossRefGoogle Scholar
  9. G.D. Fleishman, Effect of random inhomogeneities on electron cyclotron maser emission. ApJ 601, 559–564 (2004a)ADSCrossRefGoogle Scholar
  10. G.D. Fleishman, Natural spectral bandwidth of electron cyclotron maser emission. Astron. Lett.30, 603–614 (2004b)ADSCrossRefGoogle Scholar
  11. G.D. Fleishman, A.A. Kuznetsov, Fast gyrosynchrotron codes. ApJ721, 1127–1141 (2010)Google Scholar
  12. G.D. Fleishman, V.F. Melnikov, Millisecond solar radio spikes. Uspekhi Fizicheskikh Nauk 41, 1157–1189 (1998)CrossRefGoogle Scholar
  13. V.L. Ginzburg,Theoretical Physics and Astrophysics, 3rd revised and enlarged edn. [in Russian] (Izdatel Nauka, Moscow, 1987)Google Scholar
  14. A.A. Kuznetsov, J.G. Doyle, S. Yu, G. Hallinan, A. Antonova, A. Golden, Comparative analysis of two formation scenarios of bursty radio emission from ultracool dwarfs. ApJ 746, 99 (2012)ADSCrossRefGoogle Scholar
  15. A.A. Kuznetsov, G.M. Nita, G.D. Fleishman, Three-dimensional simulations of gyrosynchrotron emission from mildly anisotropic nonuniform electron distributions in symmetric magnetic loops. arXiv eprint 1108.5150. ApJ, vol. 742, pp. 87 (2011). doi 10.1088/0004-637X/742/2/87. Provided by the SAO/NASA Astrophysics Data System
  16. L. Lamy, P. Schippers, P. Zarka, B. Cecconi, C.S. Arridge, M.K. Dougherty, P. Louarn, N. André, W.S. Kurth, R.L. Mutel, D.A. Gurnett, A.J. Coates, Properties of Saturn kilometric radiation measured within its source region. Geophys. Res. Lett. 371, 12104 (2010)ADSGoogle Scholar
  17. V.F. Melnikov, G.D. Fleishman, Q.J. Fu, G.L. Huang, Flare-plasma diagnostics from millisecond pulsations of the solar radio emission. Astron. Rep. 46, 497–514 (2002a)ADSCrossRefGoogle Scholar
  18. D. Mihalas, Stellar atmospheres /2nd edition/. San Francisco, W. H. Freeman and Co., 1978. 650 p., Provided by the SAO/NASA Astrophysics Data System, p. 650 (1978).
  19. D.I. Nagirner,Lektsii po Teorii Perenosa Izlucheniya [in Russian] (SPb University, St. Petersburg, 2007a)Google Scholar
  20. G.M. Nita, D.E. Gary, J. Lee, Statistical study of two years of solar flare radio spectra obtained with the Owens valley solar array. ApJ 605, 528–545 (2004)ADSCrossRefGoogle Scholar
  21. R.A. Osten, T.S. Bastian, Ultrahigh time resolution observations of radio bursts on AD Leonis. ApJ 674, 1078–1085 (2008)ADSCrossRefGoogle Scholar
  22. I.V. Rozhansky, G.D. Fleishman, G.L. Huang, Millisecond microwave spikes: statistical study and application for plasma diagnostics. ApJ 681, 1688–1697 (2008)ADSCrossRefGoogle Scholar
  23. R.J. Strangeway, R.E. Ergun, C.W. Carlson, J.P. McFadden, G.T. Delory, E.L. Pritchett. Accelerated electrons as the source of auroral kilometric radiation. Phys. Chemistry of the Earth C26, 145–149 (2001)ADSGoogle Scholar
  24. R.A. Treumann, The electron-cyclotron maser for astrophysical application. A&AR 13, 229–315 (2006)ADSCrossRefGoogle Scholar
  25. V.V. Zaitsev, A.V. Stepanov, The plasma radiation of flare kernels. Solar Phys. 88, 297–313 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gregory D. Fleishman
    • 1
  • Igor N. Toptygin
    • 2
  1. 1.Center for Solar-Terrestrial Research New Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of Theoretical PhysicsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations