System CaO–MgO–SiO2



The main focus in this chapter is on the enstatite-diopside join, which includes petrologically most important compositions in the CMS system, and is, undoubtedly, the most thoroughly investigated binary join in the experimental petrology. The earlier investigations concentrated mainly on the subsolidus phase relations since the data of Davis and Boyd [155] suggested that the compositions of the coexisting orthopyroxene and clinopyroxene are primarily temperature dependent and thus suitable as a geothermometer. The first experimental data at 1 atm were reported by Atlas [91], Boyd and Shairer [118], Kushiro [287], Yang and Foster [469], and Yang [468]. Later studies at 1 atm were conducted to elucidate the stability of the second field of orthopyroxene found at high temperatures [99, 172, 253, 305]. First subsolidus data at high pressures were reported by Warner and Luth [439], Mori and Green [329], and Lindsley and Dixon [296]. A good summary of these studies was given by Carlson [132] and Carlson and Lindsley [134].


Stability Field Eutectic Melting Majorite Garnet Melting Relation Subsolidus Phase Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 15.
    Gasparik, T.: Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contrib. Miner. Petrol. 102, 389–405 (1989)CrossRefGoogle Scholar
  2. 19.
    Gasparik, T.: A thermodynamic model for the enstatite-diopside join. Am. Mineral. 75, 1080–1091 (1990)Google Scholar
  3. 21.
    Gasparik, T.: Phase relations in the transition zone. J. Geophys. Res. 95, 15751–15769 (1990)CrossRefGoogle Scholar
  4. 24.
    Presnall, D.C., Gasparik, T.: Melting of enstatite (MgSiO3) from 10 to 16.5 GPa and the forsterite (Mg2SiO4) – majorite (MgSiO3) eutectic at 16.5 GPa: implications for the origin of the mantle. J. Geophys. Res. 95, 15771–15777 (1990)CrossRefGoogle Scholar
  5. 26.
    Herzberg, C., Gasparik, T.: Garnet and pyroxenes in the mantle: a test of the majorite fractionation hypothesis. J. Geophys. Res. 96, 16263–16274 (1991)CrossRefGoogle Scholar
  6. 38.
    Gasparik, T., Wolf, K., Smith, C.M.: Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. Am. Mineral. 79, 1219–1222 (1994)Google Scholar
  7. 40.
    Hazen, R.M., Downs, R.T., Finger, L.W., Conrad, P.G., Gasparik, T.: Crystal chemistry of cabearing majorite. Am. Mineral. 79, 581–584 (1994)Google Scholar
  8. 44.
    Gasparik, T.: Melting experiments on the enstatite-diopside join at 70–224 kbar, including the melting of diopside. Contrib. Miner. Petrol. 124, 139–153 (1996)CrossRefGoogle Scholar
  9. 82.
    Anastasiou, P., Seifert, F.: Solid solubility of Al2O3 in enstatite at high temperatures and 1–5 kb water pressure. Contrib. Miner. Petrol. 34, 272–287 (1972)CrossRefGoogle Scholar
  10. 90.
    Atlas, L.: The polymorphism of MgSiO3 and solid-state equilibria in the system MgSiO3–CaMgSi2O6. J. Geol. 60, 125–147 (1952)CrossRefGoogle Scholar
  11. 98.
    Biggar, G.M.: Calcium-poor pyroxenes: phase relations in the system CaO–MgO–Al2O3–SiO2. Miner. Mag. 49, 49–58 (1985)CrossRefGoogle Scholar
  12. 99.
    Biggar, G.M.: Protoenstatite compositions from 1 bar to 5 kb (abs). Chem. Geol. 70, 3 (1988)CrossRefGoogle Scholar
  13. 110.
    Bowen, N.L.: The ternary system diopside-forsterite-silica. Am. J. Sci. 38, 207–264 (1914)CrossRefGoogle Scholar
  14. 114.
    Boyd, F.R., England, J.L.: Effect of pressure on the melting of diopside, CaMgSi2O6, and albite, NaAlSi3O8, in the range up to 50 kilobars. J. Geophys. Res. 68, 311–323 (1963)CrossRefGoogle Scholar
  15. 117.
    Boyd, F.R., Shairer, J.F.: The system MgSiO3–CaMgSi2O6. J. Petrol. 5, 275–309 (1964)CrossRefGoogle Scholar
  16. 118.
    Boyd, F.R., England, J.L., Davis, B.T.C.: Effects of pressure on the melting and polymorphism of enstatite, MgSiO3. J. Geophys. Res. 69, 2101–2109 (1964)CrossRefGoogle Scholar
  17. 120.
    Brey, G., Huth, J.: The enstatite-diopside solvus to 60 kbar. Proceed Third Inter Kimberlite Conf. 2, 257–264 (1984)Google Scholar
  18. 127.
    Canil, D.: Stability of clinopyroxene at pressure-temperature conditions of the transition zone. Phys. Earth. Planet. Inter. 86, 25–34 (1994)CrossRefGoogle Scholar
  19. 129.
    Carlson, W.D.: Evidence against the stability of orthoenstatite above 1005°C at atmospheric pressure in CaO–MgO–SiO2. Geophys. Res. Lett. 12, 409–411 (1985)CrossRefGoogle Scholar
  20. 130.
    Carlson, W.D.: Reversed pyroxene phase equilibria in CaO–MgO–SiO2 at one atmosphere pressure. Contrib. Miner. Petrol. 92, 218–224 (1986)CrossRefGoogle Scholar
  21. 131.
    Carlson, W.D.: Subsolidus phase equilibria on the forsterite-saturated join Mg2Si2O6–CaMgSi2O6 at atmospheric pressure. Am. Mineral. 73, 232–241 (1988)Google Scholar
  22. 133.
    Carlson, W.D., Lindsley, D.H.: Thermochemistry of pyroxenes on the join Mg2Si2O6–CaMgSi2O6. Am. Mineral. 73, 242–252 (1988)Google Scholar
  23. 134.
    Carlson, W.D., Swinnea, J.S., Miser, D.E.: Stability of orthoenstatite at high temperature and low pressure. Am. Mineral. 73, 1255–1263 (1988)Google Scholar
  24. 145.
    Chen, C.-H., Presnall, D.C.: The system Mg2SiO4-SiO2 at pressures up to 25 kilobars. Am. Mineral. 60, 398–406 (1975)Google Scholar
  25. 153.
    Davidson, P.M., Lindsley, D.H., Carlson, W.D.: Thermochemistry of pyroxenes on the join Mg2Si2O6–CaMgSi2O6: a revision of the model for pressures up to 30 kbar. Am. Mineral. 73, 1264–1266 (1988)Google Scholar
  26. 154.
    Davis, B.T.C., Boyd, F.R.: The join Mg2Si2O6–CaMgSi2O6 at 30 kilobars pressure and its application to pyroxenes from kimberlites. J. Geophys. Res. 71, 3567–3576 (1966)CrossRefGoogle Scholar
  27. 165.
    Essene, E.: High-pressure transformations in CaSiO3. Contrib. Miner. Pet 45, 247–250 (1974)CrossRefGoogle Scholar
  28. 171.
    Foster, W.R., Lin, H.C.: New data on the forsterite-diopside-silica system. Eos. Trans. AGU. 56, 470 (1975)Google Scholar
  29. 226.
    Howells, S., O’Hara, M.J.: Palaeogeotherms and the diopside-enstatite solvus. Nature 254, 406–408 (1975)CrossRefGoogle Scholar
  30. 239.
    Irifune, T., Ohtani, E.: Melting of pyrope Mg3Al2Si3O12 up to 10 GPa: possibility of a pressureinduced structural change in pyrope melt. J. Geophys. Res. 91, 9357–9366 (1986)CrossRefGoogle Scholar
  31. 242.
    Irifune, T., Susaki, J., Yagi, T., Sawamoto, H.: Phase transformations in diopside CaMgSi2O6 at pressures up to 25 GPa. Geophys. Res. Lett. 16, 187–190 (1989)CrossRefGoogle Scholar
  32. 252.
    Jenner, G.A., Green, D.H.: Equilibria in the Mg-rich part of the pyroxene quadrilateral. Miner. Mag. 47, 153–160 (1983)CrossRefGoogle Scholar
  33. 260.
    Kanzaki, M., Stebbins, J.F., Xue, X.: Characterization of quenched high pressure phases in Ca- SiO3 system by XRD and 29Si NMR. Geophys. Res. Lett. 18, 463–466 (1991)CrossRefGoogle Scholar
  34. 281.
    Kushiro, I.: Wollastonite-pseudowollastonite inversion. Carnegie. Inst. Wash. Yearb. 63, 83–84 (1964)Google Scholar
  35. 284.
    Kushiro, I.: The system forsterite-diopside-silica with and without water at high pressures. Am. J. Sci. 267-A, 269–294 (1969)Google Scholar
  36. 286.
    Kushiro, I.: Determination of liquidus relations in synthetic silicate systems with electron probe analysis: the system forsterite-diopside-silica at 1 atmosphere. Am. Mineral. 57, 1260–1271 (1972)Google Scholar
  37. 294.
    Lindsley, D.H.: Phase equilibria of pyroxenes at pressures > 1 atmosphere. In: Prewitt, C.T. (ed.) Reviews in Mineralogy. Pyroxenes, vol. 7, pp. 289–307. Mineralogical Society of America, Washington DC (1980)Google Scholar
  38. 295.
    Lindsley, D.H., Dixon, S.A.: Diopside-enstatite equilibria at 850 to 1400°C, 5–35 kbars. Am. J. Sci. 276, 1285–1301 (1976)CrossRefGoogle Scholar
  39. 297.
    Lindsley, D.H., Grover, J.E., Davidson, P.M.: The thermodynamics of the Mg2Si2O6–CaMgSi2O6 join: a review and an improved model. In: Newton, R.C., Navrotsky, A., Wood, B.J. (eds.) Thermodynamics of Minerals and Melts, pp. 149–175. Springer-Verlag, New York (1981)CrossRefGoogle Scholar
  40. 304.
    Longhi, J., Boudreau, A.E.: The orthoenstatite liquidus field in the system forsterite-diopside-silica at one atmosphere. Am. Mineral. 65, 563–573 (1980)Google Scholar
  41. 308.
    Malavergne, V., Guyot, F., Benzerara, K., Martinez, I.: Description of new shock-induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteorit. Planet. Sci. 36, 1297–1305 (2001)CrossRefGoogle Scholar
  42. 313.
    Mao, H.K., Yagi, T., Bell, P.M.: Mineralogy of the earth’s deep mantle: quenching experiments on mineral compositions at high pressure and temperature. Carnegie. Inst. Wash. Yearb. 76, 502–504 (1977)Google Scholar
  43. 328.
    Mori, T., Green, D.H.: Pyroxenes in the system Mg2Si2O6–CaMgSi2O6 at high pressure. Earth. Planet. Sci. Lett. 26, 277–286 (1975)CrossRefGoogle Scholar
  44. 329.
    Mori, T., Green, D.H.: Subsolidus equilibria between pyroxenes in the CaO–MgO–SiO2 system at high pressures and temperatures. Am. Mineral. 61, 616–625 (1976)Google Scholar
  45. 338.
    Nickel, K.G., Brey, G.: Subsolidus orthopyroxene-clinopyroxene systematics in the system CaO–MgO–SiO2 to 60 kbar: a re-evaluation of the regular solution model. Contrib. Miner. Pet. 87, 35–42 (1984)CrossRefGoogle Scholar
  46. 348.
    Osborn, E.F., Shairer, J.F.: The ternary system pseudowollastonite-åkermanite-gehlenite. Am. J. Sci. 239, 715–763 (1941)CrossRefGoogle Scholar
  47. 394.
    Scarfe, C.M., Takahashi, E.: Melting of garnet peridotite to 13 GPa and the early history of the upper mantle. Nature 322, 354–356 (1986)CrossRefGoogle Scholar
  48. 400.
    Schweitzer, E.: The reaction pigeonite = diopsidess + enstatitess at 15 kbars. Am. Mineral. 67, 54–58 (1982)Google Scholar
  49. 408.
    Shen, G., Lazor, P.: Measurement of melting temperatures of some minerals under lower mantle pressures. J. Geophys. Res. 100, 17699–17713 (1995)CrossRefGoogle Scholar
  50. 410.
    Simon, F.E., Glatzel, G.: Remarks on the fusion-pressure curve. Z. Anorg. Allg. Chemie. 178, 309–316 (1929)CrossRefGoogle Scholar
  51. 428.
    Tamai, H., Yagi, T.: High-pressure and high-temperature phase relations in CaSiO3 and CaMgSi2O6, and elasticity of perovskite-type CaSiO3. Phys. Earth. Planet. Inter. 54, 370–377 (1989)CrossRefGoogle Scholar
  52. 438.
    Warner, R.D., Luth, W.L.: The diopside-orthoenstatite two-phase region in the system CaMgSi2O6–Mg2Si2O6. Am. Mineral. 59, 98–109 (1974)Google Scholar
  53. 443.
    Wang, Y., Weidner, D.J.: Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle. Geophys. Res. Lett. 21, 895–898 (1994)CrossRefGoogle Scholar
  54. 453.
    Williams, D.W., Kennedy, G.C.: Melting curve of diopside to 50 kilobars. J. Geophys. Res. 74, 4359–4366 (1969)CrossRefGoogle Scholar
  55. 464.
    Yamada, H., Takahashi, E.: Subsolidus phase relations between coexisting garnet and two pyroxenes at 50 to 100 kbar in the system CaO–MgO–Al2O3–SiO2. In: Kornprobst, J. (ed.) Kimberlites II: The Mantle and Crust-Mantle Relationships, pp. 247–255. Elsevier, Amsterdam (1984)Google Scholar
  56. 467.
    Yang, H.-Y.: Crystallization of iron-free pigeonite in the system anorthite-diopside-enstatite-silica at atmospheric pressure. Am. J. Sci. 273, 488–497 (1973)CrossRefGoogle Scholar
  57. 468.
    Yang, H.-Y., Foster, W.R.: Stability of iron-free pigeonite at atmospheric pressure. Am. Mineral. 57, 1232–1241 (1972)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State University of New YorkHoltsvilleUSA

Personalised recommendations