Biomarkers and Metabolomics, Evidence of Stress

  • Young Soo Keum
  • Jeong-Han Kim
  • Qing X. Li


To evaluate the biological effect(s) of a stress, it is necessary to identify and characterize the stressor(s). In general, stressors can be classified as toxicants, pathogens, and physical stimulants. Although the reactions and the degree of response may vary, stressors frequently induce extensive metabolic changes in a living organism. Comparative research on a large set of metabolites at different stress states can provide detailed insights into specific biochemical reactions and metabolic networks. Such information can be used for diagnosis of a disease or toxic effect, development of therapeutic remedies to relieve the stress or its detrimental effect, etc.


Chinook Salmon Environmental Toxicology Fathead Minnow Arsenic Sulfide Marker Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Any change(s) in physiology and biochemical process that causes deviation from a normal state of an organism and requires an adjustment to return to the normal state.


An agent, condition, or other stimulus that causes stress.


A biological chemical or macromolecule used as an indicator of a biological state that is often reflected by changes in its concentration.


Degree of poisoning or damage caused by a substance to an exposed organism.


The whole set of metabolites, forming an extensive network of metabolic reactions, in a biological system (e.g., an organism, organ, or cell).


Comprehensive study of a metabolome or a set of metabolites in which one metabolite from a specific pathway affects one or more biochemical reactions, or a comprehensive and quantitative analysis of all metabolites.


Comprehensive study of a biological system. Omics fields include genomics, proteomics, metabolomics, and transcriptomics.



This work was supported in part by grants from the US Fish and Wildlife Service and Hawaii Energy and Environmental Technologies Initiative Award No. N00014-09-1-0709. We thank Adam Baker and Margaret R. Ruzicka for comprehensive review of this chapter.


Primary Literature

  1. 1.
    Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks. Comp Funct Genom 2:155–168CrossRefGoogle Scholar
  2. 2.
    Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16(9):373–378PubMedCrossRefGoogle Scholar
  3. 3.
    Blanchard J, Sawers SJ, Jonkman JH, Tang-Liu DD (1985) Comparison of the urinary metabolite profile of caffeine in young and elderly males. Br J Clin Pharmacol 19:225–232PubMedCrossRefGoogle Scholar
  4. 4.
    Nicholson JK, Timbrell JA, Bales JR, Sadler PJ (1985) A high resolution proton nuclear magnetic resonance approach to the study of hepatocyte and drug metabolism. Application to acetaminophen. Mol Pharmacol 27:634–643PubMedGoogle Scholar
  5. 5.
    Carlson EE, Cravatt BF (2007) Chemoselective probes for metabolite enrichment and profiling. Nat Methods 4:429–435PubMedGoogle Scholar
  6. 6.
    Carlson EE, Cravatt BF (2007) Enrichment tags for enhanced-resolution profiling of the polar metabolome. J Am Chem Soc 129:15780–15782PubMedCrossRefGoogle Scholar
  7. 7.
    Dunn WB, Ellis DI (2005) Metabolomics: Current analytical platforms and methodologies. Trend Anal Chem 24:285–294CrossRefGoogle Scholar
  8. 8.
    Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30:276–291PubMedCrossRefGoogle Scholar
  9. 9.
    Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696PubMedCrossRefGoogle Scholar
  10. 10.
    Brown SC, Kruppa G, Dasseux J-L (2003) Metabolomics application of FR-ICR mass spectrometry. Mass Spectrom Rev 24:223–231CrossRefGoogle Scholar
  11. 11.
    Taylor NS, Weber RJM, Southam AD, Payne TG, Hrydziuszko O, Arvanitis TN, Viant MR (2009) A new approach to toxicity testing in Daphnia magna: application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics 5:44–58CrossRefGoogle Scholar
  12. 12.
    Beckonert O, Bollard ME, Ebbels TMD, Keun HC, Antti H, Holmes E, Lindon JC, Nicholson JK (2003) NMR-based metabonomic toxicity classification: hierarchical cluster analysis and k-nearest-neighbour approaches. Anal Chim Acta 490:3–15CrossRefGoogle Scholar
  13. 13.
    Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–251PubMedCrossRefGoogle Scholar
  14. 14.
    Qiu Y, Rajagopalan D, Connor SC, Damian D, Zhu L, Handzel A, Hu G, Amanullah A, Bao S, Woody N, MacLean D, Lee K, Vanderwall D, Ryan T (2008) Multivariate classification analysis of metabolomic data for candidate biomarker discovery in type 2 diabetes mellitus. Metabolomics 4:337–346CrossRefGoogle Scholar
  15. 15.
    Wang Y, Bollard ME, Keun H, Antti H, Beckonert O, Ebbels TM, Lindon JC, Holmes E, Tang H, Nicholson JK (2003) Spectral editing and pattern recognition methods applied to high-resolution magic-angle spinning 1 H nuclear magnetic resonance spectroscopy of liver tissues. Anal Biochem 323:26–32PubMedCrossRefGoogle Scholar
  16. 16.
    Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M (2008) KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res 36(Web Server):W423–W426PubMedCrossRefGoogle Scholar
  17. 17.
    Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3–21CrossRefGoogle Scholar
  18. 18.
    Simpson MJ, McKelvie JR (2009) Environmental metabolomics: new insights into earthworm ecotoxicity and contaminant bioavailability in soil. Anal Bioanal Chem 394:137–149PubMedCrossRefGoogle Scholar
  19. 19.
    Viant MR (2008) Recent developments in environmental metabolomics. Mol Biosyst 4:980–986PubMedCrossRefGoogle Scholar
  20. 20.
    Viant MR (2009) Applications of metabolomics to the environmental sciences. Metabolomics 5(1):1–2CrossRefGoogle Scholar
  21. 21.
    Weckwerth W (2003) Metabolomics in system biology. Annu Rev Plant Biol 54:669–689PubMedCrossRefGoogle Scholar
  22. 22.
    Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646PubMedCrossRefGoogle Scholar
  23. 23.
    Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561PubMedCrossRefGoogle Scholar
  24. 24.
    Miller MG (2007) Environmental metabolomics: a SWOT analysis (strengths, weaknesses, opportunities, and threats). J Proteome Res 6:540–545PubMedCrossRefGoogle Scholar
  25. 25.
    Dix DJ, Gallagher K, Benson WH, Groskinsky BL, McClintock JT, Dearfield KL, Farland WH (2006) A framework for the use of genomics data at the EPA. Nat Biotechnol 24:1108–1111PubMedCrossRefGoogle Scholar
  26. 26.
    Mench M, Schwitzguebel J-P, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900CrossRefGoogle Scholar
  27. 27.
    Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW, Kalhan SC, Ryals JA, Milburn MV (2008) Analysis of the adult human plasma metabolome. Pharmacogenomics 9:383–397PubMedCrossRefGoogle Scholar
  28. 28.
    Kleno TG, Kiehr B, Baunsgaard D, Sidelmann UG (2004) Combination of “omics” data to investigate the mechanism(s) of hydrazine-induced hepatotoxicity in rats and to identify potential biomarkers. Biomarkers 9:116–138PubMedCrossRefGoogle Scholar
  29. 29.
    Masuo Y, Imai T, Shibato J, Hirano M, Jones OAH, Maguire ML, Satoh K, Kikuchi S, Rakwal R (2009) Omic analyses unravels global molecular changes in the brain and liver of a rat model for chronic Sake (Japanese alcoholic beverage) intake. Electrophoresis 30:1259–1275PubMedCrossRefGoogle Scholar
  30. 30.
    Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85:809–822PubMedCrossRefGoogle Scholar
  31. 31.
    Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914PubMedCrossRefGoogle Scholar
  32. 32.
    Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161PubMedCrossRefGoogle Scholar
  33. 33.
    Watson M, Roulston A, Bélec L, Billot X, Marcellus R, Bédard D, Bernier C, Branchaud S, Chan H, Dairi K, Gilbert K, Goulet D, Gratton M-O, Isakau H, Jang A, Khadir A, Koch E, Lavoie M, Lawless M, Nguyen M, Paquette D, Turcotte E, Berger A, Mitchell M, Shore GC, Beauparlant P (2009) The small molecule GMX1778 is a potent inhibitor of NAD biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Mol Cell Biol 29:5872–5888PubMedCrossRefGoogle Scholar
  34. 34.
    Mervaala E, Biala A, Merasto S, Lempiainen J, Mattila I, Martonen E, Eriksson O, Louhelainen M, Finckenberg P, Kaheinen P, Muller DN, Luft FC, Lapatto R, Oresic M (2010) Metabolomics in angiotensin II-induced cardiac hypertrophy. Hypertension 55:508–515PubMedCrossRefGoogle Scholar
  35. 35.
    Parry JD, Pointon AV, Lutz U, Teichert F, Charlwood JK, Chan P, Athersuch TJ, Taylor EL, Singh R, Luo JL, Phillips KM, Vetillard A, Lyon JJ, Keun HC, Lutz WK, Gant TW (2009) Pivotal role for two electron reduction in 2, 3-dimethoxy-1, 4-naphthoquinone and 2-methyl-1, 4-naphthoquinone metabolism and kinetics in vivo that prevents liver redox stress. Chem Res Toxicol 22:717–725PubMedCrossRefGoogle Scholar
  36. 36.
    Coen M, Lenz EM, Nicholson JK, Wilson ID, Pognan F, Lindon JC (2003) An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chem Res Toxicol 16:295–303PubMedCrossRefGoogle Scholar
  37. 37.
    Sun J, Schnackenberg LK, Holland RD, Schmitt TC, Cantor GH, Dragan YP, Beger RD (2008) Metabonomics evaluation of urine from rats given acute and chronic doses of acetaminophen using NMR and UPLC/MS. J Chromatogr B 871:328–340CrossRefGoogle Scholar
  38. 38.
    Keum YS, Kim J-H, Li QX (2010) Metabolomics in pesticide toxicology. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic, New York, pp 627–643CrossRefGoogle Scholar
  39. 39.
    Coleman S, Linderman R, Hodgson E, Rose RL (2000) Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environ Health Persp 108:1151–1157Google Scholar
  40. 40.
    Hodgson E (2001) In vitro human phase I metabolism of xenobiotics I: pesticides and related chemicals used in agriculture and public health. J Biochem Mol Toxicol 15:296–299PubMedCrossRefGoogle Scholar
  41. 41.
    Hodgson E, Levi PE (2010) Metabolism of pesticides. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic, New York, pp 893–921CrossRefGoogle Scholar
  42. 42.
    Abass K, Turpeinen M, Pelkonen O (2009) An evaluation of the cytochrome P450 inhibition potential of selected pesticides in human hepatic microsomes. J Environ Sci Health B 44:553–563PubMedCrossRefGoogle Scholar
  43. 43.
    Ekman DR, Keun HC, Eads CD, Furnish CM, Murrell RN, Rockett JC, Dix DJ (2006) Metabolomic evaluation of rat liver and testis to characterize the toxicity of triazole fungicides. Metabolomics 2:63–73CrossRefGoogle Scholar
  44. 44.
    Cherney DP, Ekman DR, Dix DJ, Collette TW (2007) Raman spectroscopy-based metabolomics for differentiating exposures to triazole fungicides using rat urine. Anal Chem 79:7324–7332PubMedCrossRefGoogle Scholar
  45. 45.
    Mally A, Amberg A, Hard GC, Dekant W (2007) Are 4-hydroxy-2(E)-nonenal derived mercapturic acids and 1 H NMR metabonomics potential biomarkers of chemically induced oxidative stress in the kidney? Toxicology 230:244–255PubMedCrossRefGoogle Scholar
  46. 46.
    Wei L, Liao P, Wu H, Li X, Pei F, Li W, Wu Y (2008) Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum. Toxicol Appl Pharmacol 227:417–429PubMedCrossRefGoogle Scholar
  47. 47.
    Wei L, Liao P, Wu H, Li X, Pei F, Li W, Wu Y (2009) Metabolic profiling studies on the toxicological effects of realgar in rats by 1 H NMR spectroscopy. Toxicol Appl Pharmacol 234:314–325PubMedCrossRefGoogle Scholar
  48. 48.
    Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, Wang Q, Yuan Y, Liao M (2008) Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232:292–301PubMedCrossRefGoogle Scholar
  49. 49.
    Aubert S, Pallett KE (2000) Combined use of 13 C- and 19 F-NMR to analyze the mode of action and the metabolism of the herbicide isoxaflutole. Plant Physiol Biochem 38:517–523CrossRefGoogle Scholar
  50. 50.
    Chen C, Gonzalez FJ, Idle JR (2007) LC-MS-based metabolomics in drug metabolism. Drug Metab Rev 39:581–597PubMedCrossRefGoogle Scholar
  51. 51.
    Chen C, Krausz KW, Idle JR, Gonzalez FJ (2008) Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and Cyp2e1-null mice. J Biol Chem 283:4543–4559PubMedCrossRefGoogle Scholar
  52. 52.
    Patterson AD, Gonzalez FJ, Idle JR (2010) Xenobiotic metabolism: a view through the metabolometer. Chem Res Toxicol 23:851–860PubMedCrossRefGoogle Scholar
  53. 53.
    Guenin S, Morvan D, Thivat E, Stepien G, Demidem A (2009) Combined methionine deprivation and chloroethylnitrosourea have time-dependent therapeutic synergy on melanoma tumors that NMR spectroscopy-based metabolomics explains by methionine and phospholipid metabolism reprogramming. Nutr Cancer 61:518–529PubMedCrossRefGoogle Scholar
  54. 54.
    Hansen M, Baunsgaard D, Autrup H, Vogel UB, Moller P, Lindecrona R, Wallin H, Poulsen HE, Loft S, Dragsted LO (2008) Sucrose, glucose and fructose have similar genotoxicity in the rat colon and affect the metabolome. Food Chem Toxicol 46:752–760PubMedCrossRefGoogle Scholar
  55. 55.
    Martin F-PJ, Rezzi S, Pere-Trepat E, Kamlage B, Collino S, Leibold E, Kastler J, Rein D, Fay LB, Kochhar S (2009) Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects. J Proteome Res 8:5568–5579PubMedCrossRefGoogle Scholar
  56. 56.
    Teague CR, Dhabhar FS, Barton RH, Beckwith-Hall B, Powell J, Cobain M, Singer B, McEwen BS, Lindon JC, Nicholson JK, Holmes E (2007) Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. J Proteome Res 6:2080–2093PubMedCrossRefGoogle Scholar
  57. 57.
    Chen M, Wang Y, Zhao Y, Wang L, Gong J, Wu L, Gao X, Yang Z, Qian L (2009) Dynamic proteomic and metabonomic analysis reveal dysfunction and subclinical injury in rat liver during restraint stress. Biochim Biophys Acta 1794:1751–1765PubMedCrossRefGoogle Scholar
  58. 58.
    Ekman DR, Teng Q, Jensen KM, Martinovic D, Villeneuve DL, Ankley GT, Collette TW (2007) NMR analysis of male fathead minnow urinary metabolites: a potential approach for studying impacts of chemical exposures. Aquat Toxicol 85:104–112PubMedCrossRefGoogle Scholar
  59. 59.
    Samuelsson LM, Forlin L, Karlsson G, Adolfsson-Erici M, Larsson DGJ (2006) Using NMR metabolomics to identify responses of an environmental estrogen in blood plasma of fish. Aquat Toxicol 78:341–349PubMedCrossRefGoogle Scholar
  60. 60.
    Stentiford GD, Viant MR, Ward DG, Johnson PJ, Martin A, Wei W, Cooper HJ, Lyons BP, Feist SW (2005) Liver tumours in wild flatfish: a histopathological, proteomic and metabolomic study. OMICS-J Integr Biol 9:281–299CrossRefGoogle Scholar
  61. 61.
    Viant VR, Pincetich CA, Hinton DE, Tjeerdema RS (2006) Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1 H NMR metabolomics. Aquat Toxicol 76:329–342PubMedCrossRefGoogle Scholar
  62. 62.
    Viant VR, Pincetich CA, Tjeerdema RS (2006) Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1 H NMR metabolomics. Aquat Toxicol 77:359–371PubMedCrossRefGoogle Scholar
  63. 63.
    Bundy JG, Osborn D, Weeks JM, Lindon JC, Nicholson JK (2001) An NMR-based metabonomic approach to the investigation of coelomic fluid biochemistry in earthworms under toxic stress. FEBS Lett 500:31–35PubMedCrossRefGoogle Scholar
  64. 64.
    Bundy JG, Lenz EM, Bailey NJ, Gavaghan CL, Svendsen C, Spurgeon D, Hankard PK, Osborn D, Weeks JM, Trauger SA (2002) Metabonomic assessment of toxicity of 4-fluoroaniline, 3, 5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): Identification of new endogenous biomarkers. Environ Toxicol Chem 21:1966–1972PubMedGoogle Scholar
  65. 65.
    Bundy JG, Lenz EM, Osborn D, Weeks JM, Lindon JC, Nicholson JK (2002) Metabolism of 4-fluoroaniline and 4-fluorobiphenyl in the earthworm Eisenia veneta characterized by high-resolution NMR spectroscopy with directly coupled HPLC-NMR and HPLC-MS. Xenobiotica 32:479–490PubMedCrossRefGoogle Scholar
  66. 66.
    Bundy JG, Sidhu JK, Rana F, Spurgeon DJ, Svendsen C, Wren JF, Stürzenbaum SR, Morgan AJ, Kille P (2008) “Systems toxicology” approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biol 6:25PubMedCrossRefGoogle Scholar
  67. 67.
    Guo Q, Sidhu JK, Ebbels TMD, Rana F, Spurgeon DJ, Svendsen C, Sturzenbaum SR, Kille P, Morgan AJ, Bundy JG (2009) Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus. Metabolomics 5:72–83CrossRefGoogle Scholar
  68. 68.
    McKelvie JR, Yuk J, Xu Y, Simpson AJ, Simpson MJ (2009) 1 H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure. Metabolomics 5:84–94CrossRefGoogle Scholar
  69. 69.
    Rochfort SJ, Ezernieks V, Yen AL (2009) NMR-based metabolomics using earthworms as potential indicators for soil health. Metabolomics 5:95–107CrossRefGoogle Scholar
  70. 70.
    Tuffnail W, Mills GA, Cary P, Greenwood R (2009) An environmental 1 H NMR metabolomic study of the exposure of the marine mussel Mytilus edulis to atrazine, lindane, hypoxia and starvation. Metabolomics 5:33–43CrossRefGoogle Scholar
  71. 71.
    Rosenblum ES, Tjeerdema RS, Viant MR (2006) Effects of temperature on host-pathogen-drug interactions in red abalone, Haliotis rufescens, determined by 1 H NMR metabolomics. Environ Sci Technol 40:7077–7084PubMedCrossRefGoogle Scholar
  72. 72.
    Ralston-Hooper K, Hopf A, Oh C, Zhang X, Adamec J, Sepulveda MS (2008) Development of GCxGC/TOF-MS metabolomics for use in ecotoxicological studies with invertebrates. Aquat Toxicol 88:48–52PubMedCrossRefGoogle Scholar
  73. 73.
    Huber M, van de Vijver LPL, Parmentier H, Savelkoul H, Coulier L, Wopereis S, Verheij E, van der Greef J, Nierop D, Hoogenboom RAP (2010) Effects of organically and conventionally produced feed on biomarkers of health in a chicken model. Br J Nutr 103:663–676PubMedCrossRefGoogle Scholar
  74. 74.
    Feala JD, Coquin L, McCulloch AD, Paternostro G (2007) Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: metabolomic and computational systems analysis. Mol Syst Biol 3:99PubMedCrossRefGoogle Scholar
  75. 75.
    Malmendal A, Overgaard J, Bundy JG, Sørensen JG, Nielsen NC, Loeschcke V, Holmstrup M (2006) Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. Am J Physiol Regul Integr Comp Physiol 291:205–212CrossRefGoogle Scholar
  76. 76.
    Guy C, Kaplan F, Kopka J, Selbig J, Hinch DK (2008) Metabolomics of temperature stress. Physiol Plant 132:220–235PubMedGoogle Scholar
  77. 77.
    Hoefgen R, Nikiforova VJ (2008) Metabolomics integrated with transcriptomics: assessing systems response to sulfur-deficiency stress. Physiol Plant 132:190–198PubMedCrossRefGoogle Scholar
  78. 78.
    Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132:209–219PubMedGoogle Scholar
  79. 79.
    Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208PubMedCrossRefGoogle Scholar
  80. 80.
    Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168PubMedCrossRefGoogle Scholar
  81. 81.
    Rudell DR, Mattheis JP, Hertog MLATM (2009) Metabolomic change precedes apple superficial scald symptoms. J Agric Food Chem 57:8459–8466PubMedCrossRefGoogle Scholar
  82. 82.
    Thiocone A, Farmer EE, Wolfender J-L (2008) Screening for wound-induced oxylipins in Arabidopsis thaliana by differential HPLC-APCI/MS profiling of crude leaf extracts and subsequent characterisation by capillary-scale NMR. Phytochem Anal 19:198–205PubMedCrossRefGoogle Scholar
  83. 83.
    Glauser G, Guillarme D, Grata E, Boccard J, Thiocone A, Carrupt P-A, Veuthey J-L, Rudaz S, Wolfender J-L (2008) Optimized liquid chromatography-mass spectrometry approach for the isolation of minor stress biomarkers in plant extracts and their identification by capillary nuclear magnetic resonance. J Chromatogr A 1180:90–98PubMedCrossRefGoogle Scholar
  84. 84.
    Sarry J-E, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198PubMedCrossRefGoogle Scholar
  85. 85.
    Jahangir M, Abdel-Farid IB, Choi YH, Verpoorte R (2008) Metal ion-inducing metabolite accumulation in Brassica rapa. J Plant Physiol 165:1429–1437PubMedCrossRefGoogle Scholar
  86. 86.
    Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138:304–318PubMedCrossRefGoogle Scholar
  87. 87.
    Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134PubMedCrossRefGoogle Scholar
  88. 88.
    Kim JK, Bamba T, Harada K, Fukusaki E, Kovayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot 58:415–424PubMedCrossRefGoogle Scholar
  89. 89.
    Sanchez DH, Lippold F, Redestig H, Hannah MA, Erban A, Kraemer U, Kopka J, Udvardi MK (2008) Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J 53:973–987PubMedCrossRefGoogle Scholar
  90. 90.
    Smith AR, Johnson HE, Hall M (2003) Metabolic fingerprinting of salt-stressed tomatoes. Bulgarian J. Plant Physiol 29:153–163Google Scholar
  91. 91.
    Widodo PJH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103PubMedCrossRefGoogle Scholar
  92. 92.
    Foito A, Byrne SL, Shepherd T, Stewart D, Barth S (2009) Transcriptional and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress. Plant Biotechnol J 7:719–732PubMedCrossRefGoogle Scholar
  93. 93.
    Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10210PubMedCrossRefGoogle Scholar
  94. 94.
    Ott KH, Aranı´bar N, Singh B, Stockton GW (2003) Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry 62:971–985PubMedCrossRefGoogle Scholar
  95. 95.
    Aliferis KA, Chrysayi-Tokousbalides M (2005) Metabonomic strategy for the investigation of the mode of action of the phytotoxin (5 S, 8R, 13 S, 16R)-(-)-pyrenophorol using H nuclear magnetic resonance fingerprinting. J Agric Food Chem 54:1687–1692CrossRefGoogle Scholar
  96. 96.
    Aliferis KA, Materzok S, Paziotou GN, Chrysayi-Tokousbalides M (2009) Lemna minor L. as a model organism for ecotoxicological studies performing 1 H NMR fingerprinting. Chemosphere 76:967–973PubMedCrossRefGoogle Scholar
  97. 97.
    Trenkamp S, Eckes P, Busch M, Fernie AR (2009) Temporally resolved GC-MS-based metabolic profiling of herbicide treated plants treated reveals that changes in polar primary metabolites alone can distinguish herbicides of differing mode of action. Metabolomics 5:277–291PubMedCrossRefGoogle Scholar
  98. 98.
    Perez IS, Culzoni MJ, Siano GG, Garcia MDG, Goicoechea HC, Galera MM (2009) Detection of unintended stress effects based on a metabonomic study in tomato fruits after treatment with carbofuran pesticide. Capabilities of MCR-ALS applied to LC-MS three-way data arrays. Anal Chem 81:8335–8346CrossRefGoogle Scholar
  99. 99.
    Widarto HT, Meijden E, Lefeber AWM, Erkelens C, Kim HK, Choi YH, Verpoorte R (2006) Metabolomic differentiation of Brassica rapa following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy. J Chem Ecol 32:2417–2428PubMedCrossRefGoogle Scholar
  100. 100.
    Bölling C, Fiehn O (2005) Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol 139:1995–2005PubMedCrossRefGoogle Scholar
  101. 101.
    Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425PubMedCrossRefGoogle Scholar
  102. 102.
    La Barre SL, Weinberger F, Kervarec N, Potin P (2004) Monitoring defensive responses in macroalgae – limitations and perspectives. Phytochem Rev 3:371–379CrossRefGoogle Scholar
  103. 103.
    Cho K, Shibato J, Agrawal GK, Jung Y-H, Kubo A, Jwa N-S, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R (2008) Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res 7:2980–2998PubMedCrossRefGoogle Scholar
  104. 104.
    Sato S, Arita M, Soga T, Nishioka T, Tomita M (2008) Time-resolved metabolomics reveals metabolic modulation in rice foliage. BMC Sys Biol 2:51CrossRefGoogle Scholar
  105. 105.
    Tweeddale H, Notley-McRobb L, Ferenci T (1999) Assessing the effect of reactive oxygen species on Escherichia coli using a metabolome approach. Redox Rep 4:237–241PubMedCrossRefGoogle Scholar
  106. 106.
    Allen J, Davey HM, Broadhurst D, Rowland JJ, Oliver SG, Kell DB (2004) Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Appl Environ Microbiol 70:6157–6165PubMedCrossRefGoogle Scholar
  107. 107.
    Allen AE, Laroche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, Finazzi G, Fernie AR, Bowler C (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci USA 105:10438–10443PubMedCrossRefGoogle Scholar
  108. 108.
    Tanaka Y, Higashi T, Rakwal R, Wakida S-I, Iwahashi H (2007) Quantitative analysis of sulfur-related metabolites during cadmium stress response in yeast by capillary electrophoresis-mass spectrometry. J Pharm Biomed Anal 44:608–613PubMedCrossRefGoogle Scholar
  109. 109.
    Tremaroli V, Workentine ML, Weljie AM, Vogel HJ, Ceri H, Viti C, Tatti E, Zhang P, Hynes AP, Turner RJ, Zannoni D (2009) Metabolomic investigation of the bacterial response to a metal challenge. Appl Environ Microbiol 75:719–728PubMedCrossRefGoogle Scholar
  110. 110.
    Tang YJ, Martin HG, Deutschbauer A, Feng X, Huang R, Llora X, Arkin A, Keasling JD (2009) Invariability of central metabolic flux distribution in Shewanella oneidensis MR-1 under environmental or genetic perturbations. Biotechnol Progr 25:1254–1259CrossRefGoogle Scholar
  111. 111.
    Barsch A, Patschkowski T, Niehaus K (2004) Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography–mass spectrometry. Funct Integr Genomics 4:219–230PubMedCrossRefGoogle Scholar
  112. 112.
    Keum YS, Seo JS, Li QX, Kim JH (2008) Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene. Appl Microbiol Biotechnol 80:863–872PubMedCrossRefGoogle Scholar
  113. 113.
    Matsuzaki F, Shimizu M, Wariishi H (2008) Proteomic and metabolomic analyses of the white-rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid. J Proteome Res 7:2342–2350PubMedCrossRefGoogle Scholar
  114. 114.
    Denery J, Cooney M, Li QX (2010) Diauxic and antimicrobial growth phases of Streptomyces tenjimariensis: metabolite profiling and gene expression. J Biomed Biotechnol (submitted)Google Scholar
  115. 115.
    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue):D603–D610PubMedCrossRefGoogle Scholar

Books and Reviews

  1. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks. Comp Func Genom 2:155–168CrossRefGoogle Scholar
  2. Hodgson E, Levi PE (2010) Metabolism of pesticides. In: Krieger R (ed) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic, New York, pp 893–921CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Applied Life SciencesKonkuk University, College of Life and Environmental ScienceSeoulSouth Korea
  2. 2.Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
  3. 3.Department of Molecular Biosciences and BioengineeringUniversity of HawaiiHonoluluUSA

Personalised recommendations