Semantics of First-Order Languages

  • Shashi Mohan Srivastava
Chapter
Part of the Universitext book series (UTX)

Abstract

In the last chapter, we presented syntactical notions pertaining to first-order theories. However, in general, mathematical theories are not developed syntactically. In this chapter, we give the semantics of first-order languages to connect the syntactical description of a theory with the setting in which a mathematical theory is generally developed. This chapter should also be seen as the beginning of a branch of logic called model theory, which can be thought of as the general study of mathematical structures. Some important notions from model theory, for example, the downward Löwenheim–Skolem theorem, types, homogeneous structures, and definability, are introduced here.

Keywords

Hull Fermat 

References

  1. 1.
    Ax, J.: The elementary theory of finite fields. Ann. Math. 88, 103–115 (1968)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bochnak, J., Coste, M., Roy, M-F.: Real Algebraic Geometry, vol. 36, A Series of Modern Surveys in Mathematics. Springer, New York (1998)MATHGoogle Scholar
  3. 3.
    Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland, London (1990)MATHGoogle Scholar
  4. 4.
    Flath, D., Wagon, S.: How to pick out integers in the rationals: An application of number theory to logic. Am. Math. Mon. 98, 812–823 (1991)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Hinman, P.: Fundamentals of Mathematical Logic. A. K. Peters (2005)MATHGoogle Scholar
  6. 6.
    Hofstadter, D.R.: Gödel, Escher, Bach: An Eternal Golden Braid. Vintage Books, New York (1989)Google Scholar
  7. 7.
    Hrushovski, E.: The Mordell–Lang conjecture for function fields. J. Am. Math. Soc. 9(3), 667–690 (1996)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Jech, T.: Set Theory, Springer Monographs in Mathematics, 3rd edn. Springer, New York (2002)Google Scholar
  9. 9.
    Kunen, K.: Set Theory: An Introduction to Independence Proofs. North-Holland, Amsterdam (1980)MATHGoogle Scholar
  10. 10.
    Lang, S.: Algebra, 3rd edn. Addison-Wesley (1999)Google Scholar
  11. 11.
    Marker, D.: Model Theory: An Introduction, GTM 217. Springer, New York (2002)Google Scholar
  12. 12.
    Rogers, H.J.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)MATHGoogle Scholar
  13. 13.
    Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1990)Google Scholar
  14. 14.
    Pila, J.: O-minimality and André-Oort conjecture for ℂ n. Ann. Math. (2) 172(3), 1779–1840 (2011)Google Scholar
  15. 15.
    Pila, J., Zannier, U.: Rational points in periodic analytic sets and the Manin-Mumford conjecture, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei(9). Mat. Appl. 19(2), 149–162 (2008)Google Scholar
  16. 16.
    Shoenfield, J.R.: Mathematical Logic. A. K. Peters (2001)MATHGoogle Scholar
  17. 17.
    Srivastava, S.M.: A Course on Borel Sets, GTM 180. Springer, New York (1998)CrossRefGoogle Scholar
  18. 18.
    Swan, R.G.: Tarski’s principle and the elimination of quantifiers (preprint)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shashi Mohan Srivastava
    • 1
  1. 1.Indian Statistical InstituteKolkataIndia

Personalised recommendations