Skip to main content

MSCs: Paracrine Effects

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Historically, mesenchymal stromal/stem cells (MSCs) have been ­characterized by their capacity to support hematopoiesis and differentiate into various connective tissue cell types. However, in the past decade, the field of MSC research has witnessed tremendous growth, spurred principally by studies showing that the cells are efficacious in treating a broad array of diseases. Renewed interest in MSC biology has also yielded new insights into their developmental origin, contribution to the hematopoietic stem cell niche, and mechanism of action in promoting tissue repair and regeneration. In the latter case, MSCs have been shown to secrete a bevy of proteins and other molecules that exhibit trophic, angiogenic, immunomodulatory, neuro-regulatory, anti-inflammatory, and anti-apoptotic activity and that function to restore homeostasis at sites of tissue injury and in response to disease. Herein, we provide an overview of the paracrine functions of MSCs by describing the different classes of proteins secreted by cells, the influence of the local microenvironment on their expression, and their therapeutic effects in various experimental animal models of disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Phinney DG (2008) Marrow stem cells. In: Polak J, Mantalaris S, Harding S (eds) Advances in tissue engineering. Imperial College Press, London, pp 95–122

    Chapter  Google Scholar 

  2. Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I (2006) The role of mesenchymal stem cells in haemopoiesis. Blood Rev 20(3):161–171

    Article  PubMed  CAS  Google Scholar 

  3. Clark BR, Keating A (1995) Biology of bone marrow stroma. Ann N Y Acad Sci 770:70–78

    Article  PubMed  CAS  Google Scholar 

  4. Anklesaria P, Greenberger JS, Fitzgerald TJ, Sullenbarger B, Wicha M, Campbell A (1991) Hemonectin mediates adhesion of engrafted murine progenitors to a clonal bone marrow stromal cell line from Sl/Sld mice. Blood 77(8):1691–1698

    PubMed  CAS  Google Scholar 

  5. Campbell AD, Long MW, Wicha MS (1987) Haemonectin, a bone marrow adhesion protein specific for cells of granulocyte lineage. Nature 329(6141):744–746

    Article  PubMed  CAS  Google Scholar 

  6. Zuckerman KS, Rhodes RK, Goodrum DD, Patel VR, Sparks B, Wells J et al (1985) Inhibition of collagen deposition in the extracellular matrix prevents the establishment of a stroma supportive of hematopoiesis in long-term murine bone marrow cultures. J Clin Invest 75(3):970–975

    Article  PubMed  CAS  Google Scholar 

  7. Fernandez M, Minguell JJ (1996) The role of collagen in hematopoiesis. Braz J Med Biol Res 29(9):1201–1207

    PubMed  CAS  Google Scholar 

  8. Klein G (1995) The extracellular matrix of the hematopoietic microenvironment. Experientia 51(9–10):914–926

    Article  PubMed  CAS  Google Scholar 

  9. Siczkowski M, Clarke D, Gordon MY (1992) Binding of primitive hematopoietic progenitor cells to marrow stromal cells involves heparan sulfate. Blood 80(4):912–919

    PubMed  CAS  Google Scholar 

  10. Talts JF, Falk M, Ekblom M (1998) Expansion of the nonadherent myeloid cell population by monoclonal antibodies against tenascin-C in murine long-term bone marrow cultures. Exp Hematol 26(7):552–561

    PubMed  CAS  Google Scholar 

  11. Nagahisa H, Nagata Y, Ohnuki T, Osada M, Nagasawa T, Abe T et al (1996) Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation. Blood 87(4):1309–1316

    PubMed  CAS  Google Scholar 

  12. Seki M, Kameoka J, Takahashi S, Harigae H, Yanai N, Obinata M et al (2006) Identification of tenascin-C as a key molecule determining stromal cell-dependent erythropoiesis. Exp Hematol 34(4):519–527

    Article  PubMed  CAS  Google Scholar 

  13. Gordon MY, Riley GP, Watt SM, Greaves MF (1987) Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature 326(6111):403–405

    Article  PubMed  CAS  Google Scholar 

  14. Roberts R, Gallagher J, Spooncer E, Allen TD, Bloomfield F, Dexter TM (1988) Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 332(6162):376–378

    Article  PubMed  CAS  Google Scholar 

  15. Gupta P, Oegema TR Jr, Brazil JJ, Dudek AZ, Slungaard A, Verfaillie CM (1998) Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood 92(12):4641–4651

    PubMed  CAS  Google Scholar 

  16. Kittler EL, McGrath H, Temeles D, Crittenden RB, Kister VK, Quesenberry PJ (1992) Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma. Blood 79(12):3168–3178

    PubMed  CAS  Google Scholar 

  17. Deryugina EI, Muller-Sieburg CE (1993) Stromal cells in long-term cultures: keys to the elucidation of hematopoietic development? Crit Rev Immunol 13(2):115–150

    PubMed  CAS  Google Scholar 

  18. Nagao T (1995) Significance of bone marrow stromal cells in hematopoiesis and hematological disorders. Tokai J Exp Clin Med 20(2):121–130

    PubMed  CAS  Google Scholar 

  19. Shao LE, Frigon NL, Yu A, Palyash J, Yu J (1998) Contrasting effects of inflammatory cytokines and glucocorticoids on the production of activin A in human marrow stromal cells and their implications. Cytokine 10(3):227–235

    Article  PubMed  CAS  Google Scholar 

  20. Yang M, Li K, Lam AC, Yuen PMP, Fok TF, Chesterman CN et al (2001) Platelet-derived growth factor enhances granulopoiesis via bone marrow stromal cells. Int J Hematol 73(3):327–334

    Article  PubMed  CAS  Google Scholar 

  21. Lisovsky M, Braun SE, Ge Y, Takahira H, Lu L, Savchenko VG et al (1996) Flt3-ligand production by human bone marrow stromal cells. Leukemia 10(6):1012–1018

    PubMed  CAS  Google Scholar 

  22. Weimar IS, Miranda N, Muller EJ, Hekman A, Kerst JM, de Gast GC et al (1998) Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 26(9):885–894

    PubMed  CAS  Google Scholar 

  23. Li L, Milner LA, Deng Y, Iwata M, Banta A, Graf L et al (1998) The human homolog of rat jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8(1):43–55

    Article  PubMed  CAS  Google Scholar 

  24. Manske JM, Sullivan EL, Andersen SM (1995) Substance P mediated stimulation of cytokine levels in cultured murine bone marrow stromal cells. Adv Exp Med Biol 383:53–64

    Article  PubMed  CAS  Google Scholar 

  25. Sakagami Y, Girasole G, Yu XP, Boswell HS, Manolagas SC (1993) Stimulation of interleukin-6 production by either calcitonin gene-related peptide or parathyroid hormone in two phenotypically distinct bone marrow-derived murine stromal cell lines. J Bone Miner Res 8(7):811–816

    Article  PubMed  CAS  Google Scholar 

  26. Hausler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ et al (2004) Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res 19(11):1873–1881

    Article  PubMed  CAS  Google Scholar 

  27. Renstrom J, Istvanffy R, Gauthier K, Shimono A, Mages J, Jardon-Alvarez A et al (2009) Secreted frizzled-related protein 1 extrinsically regulates cycling activity and maintenance of hematopoietic stem cells. Cell Stem Cell 5(2):157–167

    Article  PubMed  CAS  Google Scholar 

  28. Tokoyoda K, Hauser AE, Nakayama T, Radbruch A (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10(3):193–200

    Article  PubMed  CAS  Google Scholar 

  29. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA et al (2001) Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97(10):3075–3085

    Article  PubMed  CAS  Google Scholar 

  30. Bodo M, Baroni T, Tabilio A (2009) Haematopoietic and stromal stem cell regulation by extracellular matrix components and growth factors. J Stem Cells 4(1):57–69

    PubMed  CAS  Google Scholar 

  31. Gupta P, Blazar BR, Gupta K, Verfaillie CM (1998) Human CD34(+) bone marrow cells regulate stromal production of interleukin-6 and granulocyte colony-stimulating factor and increase the colony-stimulating activity of stroma. Blood 91(10):3724–3733

    PubMed  CAS  Google Scholar 

  32. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–313

    Article  PubMed  CAS  Google Scholar 

  33. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307–316

    PubMed  CAS  Google Scholar 

  34. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98

    Article  PubMed  Google Scholar 

  35. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96(19):10711–10716

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T et al (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109(10):1291–1302

    PubMed  CAS  Google Scholar 

  37. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100(14):8407–8411

    Article  PubMed  CAS  Google Scholar 

  38. Anjos-Afonso F, Siapati EK, Bonnet D (2004) In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 117 (Pt 23): 5655–5664

    Article  PubMed  CAS  Google Scholar 

  39. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells 25(11):2896–2902

    Article  PubMed  Google Scholar 

  40. Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG (2001) MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 19(5):408–418

    Article  PubMed  CAS  Google Scholar 

  41. Phinney DG (2006) Gene expression profiles of mesenchymal stem cells. In: Nolta JA (ed) Genetic engineering of mesenchymal stem cells. Springer, Dordrecht, pp 59–80

    Chapter  Google Scholar 

  42. Phinney DG, Hill K, Michelson C, DuTreil M, Hughes C, Humphries S et al (2006) Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells 24(1):186–198

    Article  PubMed  Google Scholar 

  43. Wieczorek G, Steinhoff C, Schulz R, Scheller M, Vingron M, Ropers HH et al (2003) Gene expression profile of mouse bone marrow stromal cells determined by cDNA microarray analysis. Cell Tissue Res 311(2):227–237

    PubMed  CAS  Google Scholar 

  44. Silva WA Jr, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JL, Zanette DL et al (2003) The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 21(6):661–669

    Article  PubMed  CAS  Google Scholar 

  45. Kim DH, Yoo KH, Choi KS, Choi J, Choi SY, Yang SE et al (2005) Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell. Cytokine 31(2):119–126

    Article  PubMed  CAS  Google Scholar 

  46. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104(26):11002–11007

    Article  PubMed  CAS  Google Scholar 

  47. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human ­mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198(1):54–64

    Article  PubMed  CAS  Google Scholar 

  48. Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6(23):2884–2889

    Article  PubMed  CAS  Google Scholar 

  49. Rafei M, Hsieh J, Fortier S, Li M, Yuan S, Birman E et al (2008) Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112(13):4991–4998

    Article  PubMed  CAS  Google Scholar 

  50. Sarojini H, Estrada R, Lu H, Dekova S, Lee MJ, Gray RD et al (2008) PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J Cell Biochem 104(5):1793–1802

    Article  PubMed  CAS  Google Scholar 

  51. Estrada R, Li N, Sarojini H, An J, Lee MJ, Wang E (2009) Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol 219(3):563–571

    Article  PubMed  CAS  Google Scholar 

  52. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5(11):873–878

    Article  PubMed  CAS  Google Scholar 

  53. Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S et al (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109(4):1422–1432

    Article  PubMed  CAS  Google Scholar 

  54. Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26(1):99–107

    Article  PubMed  CAS  Google Scholar 

  55. Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B - but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294(3):C675–C682

    Article  PubMed  CAS  Google Scholar 

  56. Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Koppel A et al (2009) Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27(4):909–919

    Article  PubMed  CAS  Google Scholar 

  57. Zhang A, Wang Y, Ye Z, Xie H, Zhou L, Zheng S (2010) Mechanism of TNF-alpha-induced migration and hepatocyte growth factor production in human mesenchymal stem cells. J Cell Biochem 111(2):469–475

    Article  PubMed  CAS  Google Scholar 

  58. Lee MJ, Kim J, Kim MY, Bae YS, Ryu SH, Lee TG et al (2010) Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J Proteome Res 9(4):1754–1762

    Article  PubMed  CAS  Google Scholar 

  59. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63

    Article  PubMed  CAS  Google Scholar 

  60. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  PubMed  CAS  Google Scholar 

  61. Ryan JM, Barry F, Murphy JM, Mahon BP (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149(2):353–363

    Article  PubMed  CAS  Google Scholar 

  62. Zwezdaryk KJ, Coffelt SB, Figueroa YG, Liu J, Phinney DG, LaMarca HL et al (2007) Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Exp Hematol 35(4):640–652

    Article  PubMed  CAS  Google Scholar 

  63. Li Z, Wei H, Deng L, Cong X, Chen X (2010) Expression and secretion of interleukin-1beta, tumour necrosis factor-alpha and interleukin-10 by hypoxia- and serum-deprivation-stimulated mesenchymal stem cells. FEBS J 277(18):3688–3698

    Article  PubMed  CAS  Google Scholar 

  64. Zarjou A, Kim J, Traylor AM, Sanders PW, Balla J, Agarwal A et al (2011) Paracrine effects of mesenchymal stem cells in cisplatin-induced renal injury require heme oxygenase-1. Am J Physiol Renal Physiol 300(1):F254–F262

    Article  PubMed  CAS  Google Scholar 

  65. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94(1):92–95

    Article  PubMed  Google Scholar 

  66. Haider H, Jiang S, Idris NM, Ashraf M (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103(11):1300–1308

    Article  PubMed  CAS  Google Scholar 

  67. Kitta K, Day RM, Kim Y, Torregroza I, Evans T, Suzuki YJ (2003) Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells. J Biol Chem 278(7):4705–4712

    Article  PubMed  CAS  Google Scholar 

  68. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M et al (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98(25):2800–2804

    Article  PubMed  CAS  Google Scholar 

  69. Suzuki G, Lee TC, Fallavollita JA, Canty JM Jr (2005) Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res 96(7):767–775

    Article  PubMed  CAS  Google Scholar 

  70. Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J et al (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80(1):229–236; discussion 36–37

    Article  PubMed  Google Scholar 

  71. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11(4):367–368

    Article  PubMed  CAS  Google Scholar 

  72. Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N et al (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci USA 104(5):1643–1648

    Article  PubMed  CAS  Google Scholar 

  73. Li H, Zuo S, He Z, Yang Y, Pasha Z, Wang Y et al (2010) Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am J Physiol Heart Circ Physiol 299(6):H1772–H1781

    Article  PubMed  CAS  Google Scholar 

  74. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436

    Article  PubMed  CAS  Google Scholar 

  75. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12):1543–1549

    Article  PubMed  CAS  Google Scholar 

  76. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292(5):F1626–F1635

    Article  PubMed  CAS  Google Scholar 

  77. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25(9):2363–2370

    Article  PubMed  CAS  Google Scholar 

  78. Jiang BH, Zheng JZ, Aoki M, Vogt PK (2000) Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA 97(4):1749–1753

    Article  PubMed  CAS  Google Scholar 

  79. Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, Obata H, Kataoka M et al (2007) Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol 42(1):88–97

    Article  PubMed  CAS  Google Scholar 

  80. Nguyen BK, Maltais S, Perrault LP, Tanguay JF, Tardif JC, Stevens LM et al (2010) Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factors. J Cardiovasc Transl Res 3(5):547–558

    Article  PubMed  Google Scholar 

  81. Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98(11):1414–1421

    Article  PubMed  CAS  Google Scholar 

  82. Gonzalez A, Rota M, Nurzynska D, Misao Y, Tillmanns J, Ojaimi C et al (2008) Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circ Res 102(5):597–606

    Article  PubMed  CAS  Google Scholar 

  83. Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V et al (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290(6):H2196–H2203

    Article  PubMed  CAS  Google Scholar 

  84. Zhang N, Li J, Luo R, Jiang J, Wang JA (2008) Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes 116(2):104–111

    Article  PubMed  CAS  Google Scholar 

  85. Mizuno S, Kurosawa T, Matsumoto K, Mizuno-Horikawa Y, Okamoto M, Nakamura T (1998) Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest 101(9):1827–1834

    Article  PubMed  CAS  Google Scholar 

  86. Yang J, Dai C, Liu Y (2003) Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol 163(2):621–632

    Article  PubMed  CAS  Google Scholar 

  87. Ruvinov E, Leor J, Cohen S (2011) The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32(2):565–578

    Article  PubMed  CAS  Google Scholar 

  88. Lee CH, Shah B, Moioli EK, Mao JJ (2010) CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest 120(9):3340–3349

    Article  PubMed  CAS  Google Scholar 

  89. Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RC (2004) Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 78(1):83–88

    Article  PubMed  CAS  Google Scholar 

  90. Carvalho AB, Quintanilha LF, Dias JV, Paredes BD, Mannheimer EG, Carvalho FG et al (2008) Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury. Stem Cells 26(5):1307–1314

    Article  PubMed  CAS  Google Scholar 

  91. Ninichuk V, Gross O, Segerer S, Hoffmann R, Radomska E, Buchstaller A et al (2006) Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 70(1):121–129

    Article  PubMed  CAS  Google Scholar 

  92. Semedo P, Correa-Costa M, Antonio Cenedeze M, Maria Avancini Costa Malheiros D, Antonia dos Reis M, Shimizu MH et al (2009) Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27(12):3063–3073

    PubMed  CAS  Google Scholar 

  93. Igarashi A, Segoshi K, Sakai Y, Pan H, Kanawa M, Higashi Y et al (2007) Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: effects of passage number and donor age. Tissue Eng 13(10):2405–2417

    Article  PubMed  CAS  Google Scholar 

  94. Yamauchi T, Umeda F, Masakado M, Isaji M, Mizushima S, Nawata H (1994) Purification and molecular cloning of prostacyclin-stimulating factor from serum-free conditioned medium of human diploid fibroblast cells. Biochem J 303(Pt 2):591–598

    PubMed  CAS  Google Scholar 

  95. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M et al (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11(1):96–104

    Article  PubMed  CAS  Google Scholar 

  96. Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M et al (2004) Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res 1030(1):19–27

    Article  PubMed  CAS  Google Scholar 

  97. Li J, Zhu H, Liu Y, Li Q, Lu S, Feng M et al (2010) Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macaca fascicularis. Brain Res 1334:65–72

    Article  PubMed  CAS  Google Scholar 

  98. Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD et al (2008) Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med 40(4):387–397

    Article  PubMed  CAS  Google Scholar 

  99. Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A et al (2007) One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke 38(7):2150–2156

    Article  PubMed  Google Scholar 

  100. Liu Z, Li Y, Zhang X, Savant-Bhonsale S, Chopp M (2008) Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. Stroke 39(9):2571–2577

    Article  PubMed  Google Scholar 

  101. Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J et al (2010) Increasing tPA activity in ­astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One 5(2):e9027

    Article  PubMed  CAS  Google Scholar 

  102. Andrews EM, Tsai SY, Johnson SC, Farrer JR, Wagner JP, Kopen GC et al (2008) Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol 211(2):588–592

    Article  PubMed  CAS  Google Scholar 

  103. Sokolova IB, Fedotova OR, Zin’kova NN, Kruglyakov PV, Polyntsev DG (2006) Effect of mesenchymal stem cell transplantation on cognitive functions in rats with ischemic stroke. Bull Exp Biol Med 142(4):511–514

    Article  PubMed  CAS  Google Scholar 

  104. Deng YB, Ye WB, Hu ZZ, Yan Y, Wang Y, Takon BF et al (2010) Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol Res 32(2):148–156

    Article  PubMed  CAS  Google Scholar 

  105. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T et al (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88(5):1017–1025

    PubMed  CAS  Google Scholar 

  106. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J et al (2002) Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22(4):275–279

    Article  PubMed  Google Scholar 

  107. Xin H, Li Y, Chen X, Chopp M (2006) Bone marrow stromal cells induce BMP2/4 production in oxygen-glucose-deprived astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells. J Neurosci Res 83(8):1485–1493

    Article  PubMed  CAS  Google Scholar 

  108. Lu W, Tsirka SE (2002) Partial rescue of neural apoptosis in the Lurcher mutant mouse through elimination of tissue plasminogen activator. Development 129(8):2043–2050

    PubMed  CAS  Google Scholar 

  109. Chopp M, Li Y (2006) Transplantation of bone marrow stromal cells for treatment of central nervous system diseases. Adv Exp Med Biol 585:49–64

    Article  PubMed  CAS  Google Scholar 

  110. Chopp M, Li Y, Zhang ZG (2009) Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke 40(3 Suppl):S143–S145

    Article  PubMed  Google Scholar 

  111. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2008) Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 28(2):329–340

    Article  PubMed  CAS  Google Scholar 

  112. Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H et al (2006) Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 129(Pt 10):2734–2745

    Article  PubMed  CAS  Google Scholar 

  113. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S et al (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9(2):189–197

    Article  PubMed  CAS  Google Scholar 

  114. Huang D, Zhang Z, Chen B, Wu X, Wang N, Zhang Y (2008) Therapeutic efficacy of lentiviral vector mediated BDNF gene-modified MSCs in cerebral infarction. Sheng Wu Gong Cheng Xue Bao 24(7):1174–1179

    PubMed  CAS  Google Scholar 

  115. Aizman I, Tate CC, McGrogan M, Case CC (2009) Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J Neurosci Res 87(14):3198–3206

    Article  PubMed  CAS  Google Scholar 

  116. Liu N, Chen R, Du H, Wang J, Zhang Y, Wen J (2009) Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol Immunol 6(3):207–213

    Article  PubMed  Google Scholar 

  117. Li WY, Choi YJ, Lee PH, Huh K, Kang YM, Kim HS et al (2008) Mesenchymal stem cells for ischemic stroke: changes in effects after ex vivo culturing. Cell Transplant 17(9):1045–1059

    Article  PubMed  Google Scholar 

  118. Zhao F, Zhang YF, Liu YG, Zhou JJ, Li ZK, Wu CG et al (2008) Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats. Transplant Proc 40(5):1700–1705

    Article  PubMed  CAS  Google Scholar 

  119. Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S et al (2009) Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175(1):303–313

    Article  PubMed  CAS  Google Scholar 

  120. Fang X, Neyrinck AP, Matthay MA, Lee JW (2010) Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J Biol Chem 285(34):26211–26222

    Article  PubMed  CAS  Google Scholar 

  121. Salazar KD, Lankford SM, Brody AR (2009) Mesenchymal stem cells produce Wnt isoforms and TGF-beta1 that mediate proliferation and procollagen expression by lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 297(5):L1002–L1011

    Article  PubMed  CAS  Google Scholar 

  122. Xu J, Woods CR, Mora AL, Joodi R, Brigham KL, Iyer S et al (2007) Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 293(1):L131–L141

    Article  PubMed  CAS  Google Scholar 

  123. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179(3):1855–1863

    PubMed  CAS  Google Scholar 

  124. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA (2009) Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA 106(38):16357–16362

    Article  PubMed  CAS  Google Scholar 

  125. Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG et al (2010) Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA 107(12):5652–5657

    Article  PubMed  CAS  Google Scholar 

  126. Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI (2010) Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol 299(6):L760–L770

    Article  PubMed  CAS  Google Scholar 

  127. Liu Y, Dulchavsky DS, Gao X, Kwon D, Chopp M, Dulchavsky S et al (2006) Wound repair by bone marrow stromal cells through growth factor production. J Surg Res 136(2):336–341

    Article  PubMed  CAS  Google Scholar 

  128. Wang M, Crisostomo PR, Herring C, Meldrum KK, Meldrum DR (2006) Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 291(4):R880–R884

    Article  PubMed  CAS  Google Scholar 

  129. Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886

    Article  PubMed  CAS  Google Scholar 

  130. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659

    Article  PubMed  CAS  Google Scholar 

  131. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 103(46):17438–17443

    Article  PubMed  CAS  Google Scholar 

  132. Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14(6):631–640

    Article  PubMed  CAS  Google Scholar 

  133. Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A et al (2009) Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun 32(1):33–42

    Article  PubMed  CAS  Google Scholar 

  134. Park KS, Kim YS, Kim JH, Choi BK, Kim SH, Oh SH et al (2009) Influence of human allogenic bone marrow and cord blood-derived mesenchymal stem cell secreting trophic factors on ATP (adenosine-5′-triphosphate)/ADP (adenosine-5′-diphosphate) ratio and insulin secretory function of isolated human islets from cadaveric donor. Transplant Proc 41(9):3813–3818

    Article  PubMed  CAS  Google Scholar 

  135. Xu YX, Chen L, Hou WK, Lin P, Sun L, Sun Y et al (2009) Mesenchymal stem cells treated with rat pancreatic extract secrete cytokines that improve the glycometabolism of diabetic rats. Transplant Proc 41(5):1878–1884

    Article  PubMed  CAS  Google Scholar 

  136. Figliuzzi M, Cornolti R, Perico N, Rota C, Morigi M, Remuzzi G et al (2009) Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc 41(5):1797–1800

    Article  PubMed  CAS  Google Scholar 

  137. Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci USA 100(4):1902–1907

    Article  PubMed  CAS  Google Scholar 

  138. Hong YB, Kim EY, Jung SC (2006) Upregulation of proinflammatory cytokines in the fetal brain of the Gaucher mouse. J Korean Med Sci 21(4):733–738

    Article  PubMed  CAS  Google Scholar 

  139. Jeyakumar M, Thomas R, Elliot-Smith E, Smith DA, van der Spoel AC, d’Azzo A et al (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126(Pt 4):974–987

    Article  PubMed  CAS  Google Scholar 

  140. Das S, Basu A (2008) Inflammation: a new candidate in modulating adult neurogenesis. J Neurosci Res 86(6):1199–1208

    Article  PubMed  CAS  Google Scholar 

  141. Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK (2005) Neuroglial activation in Niemann-Pick Type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci Lett 381(3):234–236

    Article  PubMed  CAS  Google Scholar 

  142. Bae JS, Carter JE, Jin HK (2010) Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res 340(2):357–369

    Article  PubMed  CAS  Google Scholar 

  143. Zhao CP, Zhang C, Zhou SN, Xie YM, Wang YH, Huang H et al (2007) Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy 9(5):414–426

    Article  PubMed  CAS  Google Scholar 

  144. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D et al (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31(3):395–405

    Article  PubMed  CAS  Google Scholar 

  145. Nicaise C, Mitrecic D, Pochet R (2011) Brain and spinal cord affected by amyotrophic lateral sclerosis induce differential growth factors expression in rat mesenchymal and neural stem cells. Neuropathol Appl Neurobiol 37(2):179–188

    Article  PubMed  CAS  Google Scholar 

  146. Boucherie C, Caumont AS, Maloteaux JM, Hermans E (2008) In vitro evidence for impaired neuroprotective capacities of adult mesenchymal stem cells derived from a rat model of familial amyotrophic lateral sclerosis (hSOD1(G93A)). Exp Neurol 212(2):557–561

    Article  PubMed  CAS  Google Scholar 

  147. Cho GW, Noh MY, Kim HY, Koh SH, Kim KS, Kim SH (2010) Bone marrow-derived stromal cells from amyotrophic lateral sclerosis patients have diminished stem cell capacity. Stem Cells Dev 19(7):1035–1042

    Article  PubMed  CAS  Google Scholar 

  148. Kim H, Kim HY, Choi MR, Hwang S, Nam KH, Kim HC et al (2010) Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci Lett 468(3):190–194

    Article  PubMed  CAS  Google Scholar 

  149. Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S (2010) Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 40(2):415–423

    Article  PubMed  Google Scholar 

  150. Lee HJ, Lee JK, Lee H, Shin JW, Carter JE, Sakamoto T et al (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481(1):30–35

    Article  PubMed  CAS  Google Scholar 

  151. Pisati F, Bossolasco P, Meregalli M, Cova L, Belicchi M, Gavina M et al (2007) Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases. Cell Transplant 16(1):41–55

    PubMed  Google Scholar 

  152. Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z et al (2007) Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27(4):355–363

    Article  PubMed  Google Scholar 

  153. Horn AP, Bernardi A, Luiz Frozza R, Grudzinski PB, Hoppe JB, de Souza LF et al (2011) Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus. Stem Cells Dev 20(7):1171–1181

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald G. Phinney Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boregowda, S.V., Phinney, D.G. (2013). MSCs: Paracrine Effects. In: Hematti, P., Keating, A. (eds) Mesenchymal Stromal Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5711-4_9

Download citation

Publish with us

Policies and ethics