Advertisement

MSCs: Paracrine Effects

  • Siddiraju V. Boregowda
  • Donald G. Phinney
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Historically, mesenchymal stromal/stem cells (MSCs) have been ­characterized by their capacity to support hematopoiesis and differentiate into various connective tissue cell types. However, in the past decade, the field of MSC research has witnessed tremendous growth, spurred principally by studies showing that the cells are efficacious in treating a broad array of diseases. Renewed interest in MSC biology has also yielded new insights into their developmental origin, contribution to the hematopoietic stem cell niche, and mechanism of action in promoting tissue repair and regeneration. In the latter case, MSCs have been shown to secrete a bevy of proteins and other molecules that exhibit trophic, angiogenic, immunomodulatory, neuro-regulatory, anti-inflammatory, and anti-apoptotic activity and that function to restore homeostasis at sites of tissue injury and in response to disease. Herein, we provide an overview of the paracrine functions of MSCs by describing the different classes of proteins secreted by cells, the influence of the local microenvironment on their expression, and their therapeutic effects in various experimental animal models of disease.

Keywords

Hepatocyte Growth Factor Middle Cerebral Artery Occlusion Keratinocyte Growth Factor Human MSCs Paracrine Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Phinney DG (2008) Marrow stem cells. In: Polak J, Mantalaris S, Harding S (eds) Advances in tissue engineering. Imperial College Press, London, pp 95–122CrossRefGoogle Scholar
  2. 2.
    Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I (2006) The role of mesenchymal stem cells in haemopoiesis. Blood Rev 20(3):161–171PubMedCrossRefGoogle Scholar
  3. 3.
    Clark BR, Keating A (1995) Biology of bone marrow stroma. Ann N Y Acad Sci 770:70–78PubMedCrossRefGoogle Scholar
  4. 4.
    Anklesaria P, Greenberger JS, Fitzgerald TJ, Sullenbarger B, Wicha M, Campbell A (1991) Hemonectin mediates adhesion of engrafted murine progenitors to a clonal bone marrow stromal cell line from Sl/Sld mice. Blood 77(8):1691–1698PubMedGoogle Scholar
  5. 5.
    Campbell AD, Long MW, Wicha MS (1987) Haemonectin, a bone marrow adhesion protein specific for cells of granulocyte lineage. Nature 329(6141):744–746PubMedCrossRefGoogle Scholar
  6. 6.
    Zuckerman KS, Rhodes RK, Goodrum DD, Patel VR, Sparks B, Wells J et al (1985) Inhibition of collagen deposition in the extracellular matrix prevents the establishment of a stroma supportive of hematopoiesis in long-term murine bone marrow cultures. J Clin Invest 75(3):970–975PubMedCrossRefGoogle Scholar
  7. 7.
    Fernandez M, Minguell JJ (1996) The role of collagen in hematopoiesis. Braz J Med Biol Res 29(9):1201–1207PubMedGoogle Scholar
  8. 8.
    Klein G (1995) The extracellular matrix of the hematopoietic microenvironment. Experientia 51(9–10):914–926PubMedCrossRefGoogle Scholar
  9. 9.
    Siczkowski M, Clarke D, Gordon MY (1992) Binding of primitive hematopoietic progenitor cells to marrow stromal cells involves heparan sulfate. Blood 80(4):912–919PubMedGoogle Scholar
  10. 10.
    Talts JF, Falk M, Ekblom M (1998) Expansion of the nonadherent myeloid cell population by monoclonal antibodies against tenascin-C in murine long-term bone marrow cultures. Exp Hematol 26(7):552–561PubMedGoogle Scholar
  11. 11.
    Nagahisa H, Nagata Y, Ohnuki T, Osada M, Nagasawa T, Abe T et al (1996) Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation. Blood 87(4):1309–1316PubMedGoogle Scholar
  12. 12.
    Seki M, Kameoka J, Takahashi S, Harigae H, Yanai N, Obinata M et al (2006) Identification of tenascin-C as a key molecule determining stromal cell-dependent erythropoiesis. Exp Hematol 34(4):519–527PubMedCrossRefGoogle Scholar
  13. 13.
    Gordon MY, Riley GP, Watt SM, Greaves MF (1987) Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature 326(6111):403–405PubMedCrossRefGoogle Scholar
  14. 14.
    Roberts R, Gallagher J, Spooncer E, Allen TD, Bloomfield F, Dexter TM (1988) Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 332(6162):376–378PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta P, Oegema TR Jr, Brazil JJ, Dudek AZ, Slungaard A, Verfaillie CM (1998) Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche. Blood 92(12):4641–4651PubMedGoogle Scholar
  16. 16.
    Kittler EL, McGrath H, Temeles D, Crittenden RB, Kister VK, Quesenberry PJ (1992) Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma. Blood 79(12):3168–3178PubMedGoogle Scholar
  17. 17.
    Deryugina EI, Muller-Sieburg CE (1993) Stromal cells in long-term cultures: keys to the elucidation of hematopoietic development? Crit Rev Immunol 13(2):115–150PubMedGoogle Scholar
  18. 18.
    Nagao T (1995) Significance of bone marrow stromal cells in hematopoiesis and hematological disorders. Tokai J Exp Clin Med 20(2):121–130PubMedGoogle Scholar
  19. 19.
    Shao LE, Frigon NL, Yu A, Palyash J, Yu J (1998) Contrasting effects of inflammatory cytokines and glucocorticoids on the production of activin A in human marrow stromal cells and their implications. Cytokine 10(3):227–235PubMedCrossRefGoogle Scholar
  20. 20.
    Yang M, Li K, Lam AC, Yuen PMP, Fok TF, Chesterman CN et al (2001) Platelet-derived growth factor enhances granulopoiesis via bone marrow stromal cells. Int J Hematol 73(3):327–334PubMedCrossRefGoogle Scholar
  21. 21.
    Lisovsky M, Braun SE, Ge Y, Takahira H, Lu L, Savchenko VG et al (1996) Flt3-ligand production by human bone marrow stromal cells. Leukemia 10(6):1012–1018PubMedGoogle Scholar
  22. 22.
    Weimar IS, Miranda N, Muller EJ, Hekman A, Kerst JM, de Gast GC et al (1998) Hepatocyte growth factor/scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 26(9):885–894PubMedGoogle Scholar
  23. 23.
    Li L, Milner LA, Deng Y, Iwata M, Banta A, Graf L et al (1998) The human homolog of rat jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8(1):43–55PubMedCrossRefGoogle Scholar
  24. 24.
    Manske JM, Sullivan EL, Andersen SM (1995) Substance P mediated stimulation of cytokine levels in cultured murine bone marrow stromal cells. Adv Exp Med Biol 383:53–64PubMedCrossRefGoogle Scholar
  25. 25.
    Sakagami Y, Girasole G, Yu XP, Boswell HS, Manolagas SC (1993) Stimulation of interleukin-6 production by either calcitonin gene-related peptide or parathyroid hormone in two phenotypically distinct bone marrow-derived murine stromal cell lines. J Bone Miner Res 8(7):811–816PubMedCrossRefGoogle Scholar
  26. 26.
    Hausler KD, Horwood NJ, Chuman Y, Fisher JL, Ellis J, Martin TJ et al (2004) Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res 19(11):1873–1881PubMedCrossRefGoogle Scholar
  27. 27.
    Renstrom J, Istvanffy R, Gauthier K, Shimono A, Mages J, Jardon-Alvarez A et al (2009) Secreted frizzled-related protein 1 extrinsically regulates cycling activity and maintenance of hematopoietic stem cells. Cell Stem Cell 5(2):157–167PubMedCrossRefGoogle Scholar
  28. 28.
    Tokoyoda K, Hauser AE, Nakayama T, Radbruch A (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10(3):193–200PubMedCrossRefGoogle Scholar
  29. 29.
    Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA et al (2001) Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97(10):3075–3085PubMedCrossRefGoogle Scholar
  30. 30.
    Bodo M, Baroni T, Tabilio A (2009) Haematopoietic and stromal stem cell regulation by extracellular matrix components and growth factors. J Stem Cells 4(1):57–69PubMedGoogle Scholar
  31. 31.
    Gupta P, Blazar BR, Gupta K, Verfaillie CM (1998) Human CD34(+) bone marrow cells regulate stromal production of interleukin-6 and granulocyte colony-stimulating factor and increase the colony-stimulating activity of stroma. Blood 91(10):3724–3733PubMedGoogle Scholar
  32. 32.
    Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–313PubMedCrossRefGoogle Scholar
  33. 33.
    Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18(2):307–316PubMedGoogle Scholar
  34. 34.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98PubMedCrossRefGoogle Scholar
  35. 35.
    Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96(19):10711–10716PubMedCrossRefGoogle Scholar
  36. 36.
    Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T et al (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109(10):1291–1302PubMedGoogle Scholar
  37. 37.
    Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100(14):8407–8411PubMedCrossRefGoogle Scholar
  38. 38.
    Anjos-Afonso F, Siapati EK, Bonnet D (2004) In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 117 (Pt 23): 5655–5664PubMedCrossRefGoogle Scholar
  39. 39.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells 25(11):2896–2902PubMedCrossRefGoogle Scholar
  40. 40.
    Tremain N, Korkko J, Ibberson D, Kopen GC, DiGirolamo C, Phinney DG (2001) MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells 19(5):408–418PubMedCrossRefGoogle Scholar
  41. 41.
    Phinney DG (2006) Gene expression profiles of mesenchymal stem cells. In: Nolta JA (ed) Genetic engineering of mesenchymal stem cells. Springer, Dordrecht, pp 59–80CrossRefGoogle Scholar
  42. 42.
    Phinney DG, Hill K, Michelson C, DuTreil M, Hughes C, Humphries S et al (2006) Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells 24(1):186–198PubMedCrossRefGoogle Scholar
  43. 43.
    Wieczorek G, Steinhoff C, Schulz R, Scheller M, Vingron M, Ropers HH et al (2003) Gene expression profile of mouse bone marrow stromal cells determined by cDNA microarray analysis. Cell Tissue Res 311(2):227–237PubMedGoogle Scholar
  44. 44.
    Silva WA Jr, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JL, Zanette DL et al (2003) The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 21(6):661–669PubMedCrossRefGoogle Scholar
  45. 45.
    Kim DH, Yoo KH, Choi KS, Choi J, Choi SY, Yang SE et al (2005) Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell. Cytokine 31(2):119–126PubMedCrossRefGoogle Scholar
  46. 46.
    Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104(26):11002–11007PubMedCrossRefGoogle Scholar
  47. 47.
    Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human ­mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198(1):54–64PubMedCrossRefGoogle Scholar
  48. 48.
    Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6(23):2884–2889PubMedCrossRefGoogle Scholar
  49. 49.
    Rafei M, Hsieh J, Fortier S, Li M, Yuan S, Birman E et al (2008) Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112(13):4991–4998PubMedCrossRefGoogle Scholar
  50. 50.
    Sarojini H, Estrada R, Lu H, Dekova S, Lee MJ, Gray RD et al (2008) PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J Cell Biochem 104(5):1793–1802PubMedCrossRefGoogle Scholar
  51. 51.
    Estrada R, Li N, Sarojini H, An J, Lee MJ, Wang E (2009) Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J Cell Physiol 219(3):563–571PubMedCrossRefGoogle Scholar
  52. 52.
    Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5(11):873–878PubMedCrossRefGoogle Scholar
  53. 53.
    Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S et al (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109(4):1422–1432PubMedCrossRefGoogle Scholar
  54. 54.
    Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26(1):99–107PubMedCrossRefGoogle Scholar
  55. 55.
    Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B - but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294(3):C675–C682PubMedCrossRefGoogle Scholar
  56. 56.
    Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Koppel A et al (2009) Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27(4):909–919PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang A, Wang Y, Ye Z, Xie H, Zhou L, Zheng S (2010) Mechanism of TNF-alpha-induced migration and hepatocyte growth factor production in human mesenchymal stem cells. J Cell Biochem 111(2):469–475PubMedCrossRefGoogle Scholar
  58. 58.
    Lee MJ, Kim J, Kim MY, Bae YS, Ryu SH, Lee TG et al (2010) Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J Proteome Res 9(4):1754–1762PubMedCrossRefGoogle Scholar
  59. 59.
    Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63PubMedCrossRefGoogle Scholar
  60. 60.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822PubMedCrossRefGoogle Scholar
  61. 61.
    Ryan JM, Barry F, Murphy JM, Mahon BP (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149(2):353–363PubMedCrossRefGoogle Scholar
  62. 62.
    Zwezdaryk KJ, Coffelt SB, Figueroa YG, Liu J, Phinney DG, LaMarca HL et al (2007) Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Exp Hematol 35(4):640–652PubMedCrossRefGoogle Scholar
  63. 63.
    Li Z, Wei H, Deng L, Cong X, Chen X (2010) Expression and secretion of interleukin-1beta, tumour necrosis factor-alpha and interleukin-10 by hypoxia- and serum-deprivation-stimulated mesenchymal stem cells. FEBS J 277(18):3688–3698PubMedCrossRefGoogle Scholar
  64. 64.
    Zarjou A, Kim J, Traylor AM, Sanders PW, Balla J, Agarwal A et al (2011) Paracrine effects of mesenchymal stem cells in cisplatin-induced renal injury require heme oxygenase-1. Am J Physiol Renal Physiol 300(1):F254–F262PubMedCrossRefGoogle Scholar
  65. 65.
    Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94(1):92–95PubMedCrossRefGoogle Scholar
  66. 66.
    Haider H, Jiang S, Idris NM, Ashraf M (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103(11):1300–1308PubMedCrossRefGoogle Scholar
  67. 67.
    Kitta K, Day RM, Kim Y, Torregroza I, Evans T, Suzuki YJ (2003) Hepatocyte growth factor induces GATA-4 phosphorylation and cell survival in cardiac muscle cells. J Biol Chem 278(7):4705–4712PubMedCrossRefGoogle Scholar
  68. 68.
    Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M et al (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98(25):2800–2804PubMedCrossRefGoogle Scholar
  69. 69.
    Suzuki G, Lee TC, Fallavollita JA, Canty JM Jr (2005) Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res 96(7):767–775PubMedCrossRefGoogle Scholar
  70. 70.
    Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J et al (2005) Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 80(1):229–236; discussion 36–37PubMedCrossRefGoogle Scholar
  71. 71.
    Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11(4):367–368PubMedCrossRefGoogle Scholar
  72. 72.
    Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N et al (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci USA 104(5):1643–1648PubMedCrossRefGoogle Scholar
  73. 73.
    Li H, Zuo S, He Z, Yang Y, Pasha Z, Wang Y et al (2010) Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am J Physiol Heart Circ Physiol 299(6):H1772–H1781PubMedCrossRefGoogle Scholar
  74. 74.
    Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436PubMedCrossRefGoogle Scholar
  75. 75.
    Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12):1543–1549PubMedCrossRefGoogle Scholar
  76. 76.
    Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292(5):F1626–F1635PubMedCrossRefGoogle Scholar
  77. 77.
    Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25(9):2363–2370PubMedCrossRefGoogle Scholar
  78. 78.
    Jiang BH, Zheng JZ, Aoki M, Vogt PK (2000) Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA 97(4):1749–1753PubMedCrossRefGoogle Scholar
  79. 79.
    Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, Obata H, Kataoka M et al (2007) Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol 42(1):88–97PubMedCrossRefGoogle Scholar
  80. 80.
    Nguyen BK, Maltais S, Perrault LP, Tanguay JF, Tardif JC, Stevens LM et al (2010) Improved function and myocardial repair of infarcted heart by intracoronary injection of mesenchymal stem cell-derived growth factors. J Cardiovasc Transl Res 3(5):547–558PubMedCrossRefGoogle Scholar
  81. 81.
    Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98(11):1414–1421PubMedCrossRefGoogle Scholar
  82. 82.
    Gonzalez A, Rota M, Nurzynska D, Misao Y, Tillmanns J, Ojaimi C et al (2008) Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circ Res 102(5):597–606PubMedCrossRefGoogle Scholar
  83. 83.
    Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V et al (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290(6):H2196–H2203PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang N, Li J, Luo R, Jiang J, Wang JA (2008) Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes 116(2):104–111PubMedCrossRefGoogle Scholar
  85. 85.
    Mizuno S, Kurosawa T, Matsumoto K, Mizuno-Horikawa Y, Okamoto M, Nakamura T (1998) Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest 101(9):1827–1834PubMedCrossRefGoogle Scholar
  86. 86.
    Yang J, Dai C, Liu Y (2003) Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol 163(2):621–632PubMedCrossRefGoogle Scholar
  87. 87.
    Ruvinov E, Leor J, Cohen S (2011) The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32(2):565–578PubMedCrossRefGoogle Scholar
  88. 88.
    Lee CH, Shah B, Moioli EK, Mao JJ (2010) CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest 120(9):3340–3349PubMedCrossRefGoogle Scholar
  89. 89.
    Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RC (2004) Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 78(1):83–88PubMedCrossRefGoogle Scholar
  90. 90.
    Carvalho AB, Quintanilha LF, Dias JV, Paredes BD, Mannheimer EG, Carvalho FG et al (2008) Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury. Stem Cells 26(5):1307–1314PubMedCrossRefGoogle Scholar
  91. 91.
    Ninichuk V, Gross O, Segerer S, Hoffmann R, Radomska E, Buchstaller A et al (2006) Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int 70(1):121–129PubMedCrossRefGoogle Scholar
  92. 92.
    Semedo P, Correa-Costa M, Antonio Cenedeze M, Maria Avancini Costa Malheiros D, Antonia dos Reis M, Shimizu MH et al (2009) Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27(12):3063–3073PubMedGoogle Scholar
  93. 93.
    Igarashi A, Segoshi K, Sakai Y, Pan H, Kanawa M, Higashi Y et al (2007) Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: effects of passage number and donor age. Tissue Eng 13(10):2405–2417PubMedCrossRefGoogle Scholar
  94. 94.
    Yamauchi T, Umeda F, Masakado M, Isaji M, Mizushima S, Nawata H (1994) Purification and molecular cloning of prostacyclin-stimulating factor from serum-free conditioned medium of human diploid fibroblast cells. Biochem J 303(Pt 2):591–598PubMedGoogle Scholar
  95. 95.
    Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M et al (2005) Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 11(1):96–104PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M et al (2004) Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res 1030(1):19–27PubMedCrossRefGoogle Scholar
  97. 97.
    Li J, Zhu H, Liu Y, Li Q, Lu S, Feng M et al (2010) Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macaca fascicularis. Brain Res 1334:65–72PubMedCrossRefGoogle Scholar
  98. 98.
    Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD et al (2008) Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med 40(4):387–397PubMedCrossRefGoogle Scholar
  99. 99.
    Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A et al (2007) One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke 38(7):2150–2156PubMedCrossRefGoogle Scholar
  100. 100.
    Liu Z, Li Y, Zhang X, Savant-Bhonsale S, Chopp M (2008) Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. Stroke 39(9):2571–2577PubMedCrossRefGoogle Scholar
  101. 101.
    Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J et al (2010) Increasing tPA activity in ­astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One 5(2):e9027PubMedCrossRefGoogle Scholar
  102. 102.
    Andrews EM, Tsai SY, Johnson SC, Farrer JR, Wagner JP, Kopen GC et al (2008) Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol 211(2):588–592PubMedCrossRefGoogle Scholar
  103. 103.
    Sokolova IB, Fedotova OR, Zin’kova NN, Kruglyakov PV, Polyntsev DG (2006) Effect of mesenchymal stem cell transplantation on cognitive functions in rats with ischemic stroke. Bull Exp Biol Med 142(4):511–514PubMedCrossRefGoogle Scholar
  104. 104.
    Deng YB, Ye WB, Hu ZZ, Yan Y, Wang Y, Takon BF et al (2010) Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol Res 32(2):148–156PubMedCrossRefGoogle Scholar
  105. 105.
    Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T et al (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88(5):1017–1025PubMedGoogle Scholar
  106. 106.
    Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J et al (2002) Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22(4):275–279PubMedCrossRefGoogle Scholar
  107. 107.
    Xin H, Li Y, Chen X, Chopp M (2006) Bone marrow stromal cells induce BMP2/4 production in oxygen-glucose-deprived astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells. J Neurosci Res 83(8):1485–1493PubMedCrossRefGoogle Scholar
  108. 108.
    Lu W, Tsirka SE (2002) Partial rescue of neural apoptosis in the Lurcher mutant mouse through elimination of tissue plasminogen activator. Development 129(8):2043–2050PubMedGoogle Scholar
  109. 109.
    Chopp M, Li Y (2006) Transplantation of bone marrow stromal cells for treatment of central nervous system diseases. Adv Exp Med Biol 585:49–64PubMedCrossRefGoogle Scholar
  110. 110.
    Chopp M, Li Y, Zhang ZG (2009) Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke 40(3 Suppl):S143–S145PubMedCrossRefGoogle Scholar
  111. 111.
    Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD (2008) Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 28(2):329–340PubMedCrossRefGoogle Scholar
  112. 112.
    Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H et al (2006) Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 129(Pt 10):2734–2745PubMedCrossRefGoogle Scholar
  113. 113.
    Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S et al (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9(2):189–197PubMedCrossRefGoogle Scholar
  114. 114.
    Huang D, Zhang Z, Chen B, Wu X, Wang N, Zhang Y (2008) Therapeutic efficacy of lentiviral vector mediated BDNF gene-modified MSCs in cerebral infarction. Sheng Wu Gong Cheng Xue Bao 24(7):1174–1179PubMedGoogle Scholar
  115. 115.
    Aizman I, Tate CC, McGrogan M, Case CC (2009) Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J Neurosci Res 87(14):3198–3206PubMedCrossRefGoogle Scholar
  116. 116.
    Liu N, Chen R, Du H, Wang J, Zhang Y, Wen J (2009) Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol Immunol 6(3):207–213PubMedCrossRefGoogle Scholar
  117. 117.
    Li WY, Choi YJ, Lee PH, Huh K, Kang YM, Kim HS et al (2008) Mesenchymal stem cells for ischemic stroke: changes in effects after ex vivo culturing. Cell Transplant 17(9):1045–1059PubMedCrossRefGoogle Scholar
  118. 118.
    Zhao F, Zhang YF, Liu YG, Zhou JJ, Li ZK, Wu CG et al (2008) Therapeutic effects of bone marrow-derived mesenchymal stem cells engraftment on bleomycin-induced lung injury in rats. Transplant Proc 40(5):1700–1705PubMedCrossRefGoogle Scholar
  119. 119.
    Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S et al (2009) Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175(1):303–313PubMedCrossRefGoogle Scholar
  120. 120.
    Fang X, Neyrinck AP, Matthay MA, Lee JW (2010) Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J Biol Chem 285(34):26211–26222PubMedCrossRefGoogle Scholar
  121. 121.
    Salazar KD, Lankford SM, Brody AR (2009) Mesenchymal stem cells produce Wnt isoforms and TGF-beta1 that mediate proliferation and procollagen expression by lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 297(5):L1002–L1011PubMedCrossRefGoogle Scholar
  122. 122.
    Xu J, Woods CR, Mora AL, Joodi R, Brigham KL, Iyer S et al (2007) Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 293(1):L131–L141PubMedCrossRefGoogle Scholar
  123. 123.
    Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179(3):1855–1863PubMedGoogle Scholar
  124. 124.
    Lee JW, Fang X, Gupta N, Serikov V, Matthay MA (2009) Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA 106(38):16357–16362PubMedCrossRefGoogle Scholar
  125. 125.
    Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Bundoc VG et al (2010) Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci USA 107(12):5652–5657PubMedCrossRefGoogle Scholar
  126. 126.
    Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI (2010) Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol 299(6):L760–L770PubMedCrossRefGoogle Scholar
  127. 127.
    Liu Y, Dulchavsky DS, Gao X, Kwon D, Chopp M, Dulchavsky S et al (2006) Wound repair by bone marrow stromal cells through growth factor production. J Surg Res 136(2):336–341PubMedCrossRefGoogle Scholar
  128. 128.
    Wang M, Crisostomo PR, Herring C, Meldrum KK, Meldrum DR (2006) Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 291(4):R880–R884PubMedCrossRefGoogle Scholar
  129. 129.
    Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886PubMedCrossRefGoogle Scholar
  130. 130.
    Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659PubMedCrossRefGoogle Scholar
  131. 131.
    Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 103(46):17438–17443PubMedCrossRefGoogle Scholar
  132. 132.
    Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14(6):631–640PubMedCrossRefGoogle Scholar
  133. 133.
    Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A et al (2009) Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun 32(1):33–42PubMedCrossRefGoogle Scholar
  134. 134.
    Park KS, Kim YS, Kim JH, Choi BK, Kim SH, Oh SH et al (2009) Influence of human allogenic bone marrow and cord blood-derived mesenchymal stem cell secreting trophic factors on ATP (adenosine-5′-triphosphate)/ADP (adenosine-5′-diphosphate) ratio and insulin secretory function of isolated human islets from cadaveric donor. Transplant Proc 41(9):3813–3818PubMedCrossRefGoogle Scholar
  135. 135.
    Xu YX, Chen L, Hou WK, Lin P, Sun L, Sun Y et al (2009) Mesenchymal stem cells treated with rat pancreatic extract secrete cytokines that improve the glycometabolism of diabetic rats. Transplant Proc 41(5):1878–1884PubMedCrossRefGoogle Scholar
  136. 136.
    Figliuzzi M, Cornolti R, Perico N, Rota C, Morigi M, Remuzzi G et al (2009) Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc 41(5):1797–1800PubMedCrossRefGoogle Scholar
  137. 137.
    Ohmi K, Greenberg DS, Rajavel KS, Ryazantsev S, Li HH, Neufeld EF (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci USA 100(4):1902–1907PubMedCrossRefGoogle Scholar
  138. 138.
    Hong YB, Kim EY, Jung SC (2006) Upregulation of proinflammatory cytokines in the fetal brain of the Gaucher mouse. J Korean Med Sci 21(4):733–738PubMedCrossRefGoogle Scholar
  139. 139.
    Jeyakumar M, Thomas R, Elliot-Smith E, Smith DA, van der Spoel AC, d’Azzo A et al (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126(Pt 4):974–987PubMedCrossRefGoogle Scholar
  140. 140.
    Das S, Basu A (2008) Inflammation: a new candidate in modulating adult neurogenesis. J Neurosci Res 86(6):1199–1208PubMedCrossRefGoogle Scholar
  141. 141.
    Bae JS, Furuya S, Ahn SJ, Yi SJ, Hirabayashi Y, Jin HK (2005) Neuroglial activation in Niemann-Pick Type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci Lett 381(3):234–236PubMedCrossRefGoogle Scholar
  142. 142.
    Bae JS, Carter JE, Jin HK (2010) Adipose tissue-derived stem cells rescue Purkinje neurons and alleviate inflammatory responses in Niemann-Pick disease type C mice. Cell Tissue Res 340(2):357–369PubMedCrossRefGoogle Scholar
  143. 143.
    Zhao CP, Zhang C, Zhou SN, Xie YM, Wang YH, Huang H et al (2007) Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy 9(5):414–426PubMedCrossRefGoogle Scholar
  144. 144.
    Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D et al (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31(3):395–405PubMedCrossRefGoogle Scholar
  145. 145.
    Nicaise C, Mitrecic D, Pochet R (2011) Brain and spinal cord affected by amyotrophic lateral sclerosis induce differential growth factors expression in rat mesenchymal and neural stem cells. Neuropathol Appl Neurobiol 37(2):179–188PubMedCrossRefGoogle Scholar
  146. 146.
    Boucherie C, Caumont AS, Maloteaux JM, Hermans E (2008) In vitro evidence for impaired neuroprotective capacities of adult mesenchymal stem cells derived from a rat model of familial amyotrophic lateral sclerosis (hSOD1(G93A)). Exp Neurol 212(2):557–561PubMedCrossRefGoogle Scholar
  147. 147.
    Cho GW, Noh MY, Kim HY, Koh SH, Kim KS, Kim SH (2010) Bone marrow-derived stromal cells from amyotrophic lateral sclerosis patients have diminished stem cell capacity. Stem Cells Dev 19(7):1035–1042PubMedCrossRefGoogle Scholar
  148. 148.
    Kim H, Kim HY, Choi MR, Hwang S, Nam KH, Kim HC et al (2010) Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci Lett 468(3):190–194PubMedCrossRefGoogle Scholar
  149. 149.
    Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S (2010) Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 40(2):415–423PubMedCrossRefGoogle Scholar
  150. 150.
    Lee HJ, Lee JK, Lee H, Shin JW, Carter JE, Sakamoto T et al (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481(1):30–35PubMedCrossRefGoogle Scholar
  151. 151.
    Pisati F, Bossolasco P, Meregalli M, Cova L, Belicchi M, Gavina M et al (2007) Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases. Cell Transplant 16(1):41–55PubMedGoogle Scholar
  152. 152.
    Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z et al (2007) Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27(4):355–363PubMedCrossRefGoogle Scholar
  153. 153.
    Horn AP, Bernardi A, Luiz Frozza R, Grudzinski PB, Hoppe JB, de Souza LF et al (2011) Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus. Stem Cells Dev 20(7):1171–1181PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Molecular Therapeutics and Kellogg School of Science and TechnologyThe Scripps Research InstituteJupiterUSA
  2. 2.Department of Molecular TherapeuticsThe Scripps Research InstituteJupiterUSA

Personalised recommendations