Skip to main content

MSCs and Innate Immune Responses: A Balancing Act

  • Chapter
  • First Online:
  • 1425 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The immunoregulatory functions of bone marrow-derived stromal cells (BMSCs), also called mesenchymal stromal/stem cells (MSCs), have been studied extensively in recent years. Although there is still some confusion in the literature about the nomenclature, for the sake of simplicity, we will use the abbreviation MSC below, referring to cells isolated by their adherence to plastic, which might be derived from a variety of tissues (and might not have identical features). Most investigators who examined the mechanisms responsible for the immunomodulatory actions of MSCs focused on the interactions between the latter and cells that comprise the adaptive immune system (T and B cells). Recently, however, an increasing number of publications have described interactions between MSCs and neutrophil granulocytes and have provided data suggesting that effects on monocytes and macrophages may play a major role in MSC-induced immunomodulation. For example, MSCs were shown to enhance the antibacterial activities of neutrophil granulocytes preventing organ injury caused by the uncontrolled activation of these cells. Furthermore, MSCs were reported to modulate the functions of the monocyte/macrophage lineage by inducing these cells to acquire an anti-inflammatory phenotype. This phenotypic switch seems to be critical not only in the prevention of sepsis-induced multiorgan failure but also in the protection by MSCs seen in autoimmune settings. In fact, data suggest that MSC-macrophage interactions may even be a key intermediate step in the MSC-mediated protection from T cell-driven autoimmunity. In this chapter, we summarize the most important findings that led to these conclusions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441

    Article  PubMed  Google Scholar 

  2. Prockop DJ, Brenner M, Fibbe WE, Horwitz E, Le Blanc K, Phinney DG et al (2010) Defining the risks of mesenchymal stromal cell therapy. Cytotherapy 12(5):576–578

    Article  PubMed  Google Scholar 

  3. Tolar J, Le Blanc K, Keating A, Blazar BR (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28(8):1446–1455

    Article  PubMed  Google Scholar 

  4. Uccelli A, Prockop DJ (2010) Why should mesenchymal stem cells (MSCs) cure autoimmune diseases? Curr Opin Immunol 22(6):768–774

    Article  PubMed  CAS  Google Scholar 

  5. Zhao S, Wehner R, Bornhauser M, Wassmuth R, Bachmann M, Schmitz M (2010) Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 19(5):607–614

    Article  PubMed  CAS  Google Scholar 

  6. Mezey E, Mayer B, Nemeth K (2010) Unexpected roles for bone marrow stromal cells (or MSCs): a real promise for cellular, but not replacement, therapy. Oral Dis 16(2):129–135

    Article  PubMed  CAS  Google Scholar 

  7. Le Blanc K, Rasmusson I, Gotherstrom C, Seidel C, Sundberg B, Sundin M et al (2004) Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 60(3):307–315

    Article  PubMed  Google Scholar 

  8. Rasmusson I, Ringden O, Sundberg B, Le Blanc K (2005) Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res 305(1):33–41

    Article  PubMed  CAS  Google Scholar 

  9. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827, Epub 2004/12/14

    Article  PubMed  CAS  Google Scholar 

  10. Plumas J, Chaperot L, Richard MJ, Molens JP, Bensa JC, Favrot MC (2005) Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 19(9):1597–1604

    Article  PubMed  CAS  Google Scholar 

  11. Zhang W, Ge W, Li C, You S, Liao L, Han Q et al (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13(3):263–271

    Article  PubMed  CAS  Google Scholar 

  12. Li Pira G, Ivaldi F, Bottone L, Quarto R, Manca F (2006) Human bone marrow stromal cells hamper specific interactions of CD4 and CD8 T lymphocytes with antigen-presenting cells. Hum Immunol 67(12):976–985

    Article  PubMed  CAS  Google Scholar 

  13. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105(10):4120–4126

    Article  PubMed  CAS  Google Scholar 

  14. Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113(26):6576–6583

    Article  PubMed  CAS  Google Scholar 

  15. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372

    Article  PubMed  CAS  Google Scholar 

  16. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24(1):74–85

    Article  PubMed  Google Scholar 

  17. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49

    Article  PubMed  CAS  Google Scholar 

  18. Kaplan JM, Youd ME, Lodie TA (2011) Immunomodulatory activity of mesenchymal stem cells. Curr Stem Cell Res Ther 6(4):297–316

    Article  PubMed  CAS  Google Scholar 

  19. Nemeth K, Mayer B, Mezey E (2010) Modulation of bone marrow stromal cell functions in infectious diseases by toll-like receptor ligands. J Mol Med 88(1):5–10

    Article  PubMed  CAS  Google Scholar 

  20. Socie G, Blazar BR (2009) Acute graft-versus-host disease: from the bench to the bedside. Blood 114(20):4327–4336

    Article  PubMed  CAS  Google Scholar 

  21. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843

    Article  PubMed  Google Scholar 

  22. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11–20

    Article  PubMed  Google Scholar 

  23. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E et al (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106(5):1755–1761

    Article  PubMed  CAS  Google Scholar 

  24. Rafei M, Campeau PM, Aguilar-Mahecha A, Buchanan M, Williams P, Birman E et al (2009) Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 182(10):5994–6002

    Article  PubMed  CAS  Google Scholar 

  25. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 103(46):17438–17443

    Article  PubMed  CAS  Google Scholar 

  26. Zanone MM, Favaro E, Miceli I, Grassi G, Camussi E, Caorsi C et al (2010) Human mesenchymal stem cells modulate cellular immune response to islet antigen glutamic acid decarboxylase in type 1 diabetes. J Clin Endocrinol Metab 95(8):3788–3797

    Article  PubMed  CAS  Google Scholar 

  27. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104(26):11002–11007

    Article  PubMed  CAS  Google Scholar 

  28. Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M (2009) Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58(7):929–939

    Article  PubMed  CAS  Google Scholar 

  29. Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS et al (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182(8):1047–1057

    Article  PubMed  CAS  Google Scholar 

  30. Nolan A, Kobayashi H, Naveed B, Kelly A, Hoshino Y, Hoshino S et al (2009) Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis. PLoS One 4(8):e6600

    Article  PubMed  Google Scholar 

  31. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA (2009) Allogeneic human mesenchymal stem cells for treatment of E. Coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA 106(38):16357–16362

    Article  PubMed  CAS  Google Scholar 

  32. Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, Nahmias Y, Goldwasser Y, Kitagawa Y et al (2010) Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol Ther 18(10):1857–1864

    Article  PubMed  CAS  Google Scholar 

  33. Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK et al (2009) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110(6):1189–1197

    Article  PubMed  CAS  Google Scholar 

  34. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI et al (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18(5):683–692

    Article  PubMed  CAS  Google Scholar 

  35. Nemeth K, Wilson T, Rada B, Parmelee A, Mayer B, Buzas E, Falus A, Key S, Masszi T, Karpati S et al (2012) Characterization and function of histamine receptors in human bone marrow stromal cells. Stem Cells 30:222–231

    Google Scholar 

  36. Brandau S, Jakob M, Hemeda H, Bruderek K, Janeschik S, Bootz F et al (2010) Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol 88(5):1005–1015

    Article  PubMed  CAS  Google Scholar 

  37. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F et al (2008) Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26(1):151–162

    Article  PubMed  CAS  Google Scholar 

  38. Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453

    Article  PubMed  CAS  Google Scholar 

  39. Bonder CS, Norman MU, Macrae T, Mangan PR, Weaver CT, Bullard DC et al (2005) P-selectin can support both Th1 and Th2 lymphocyte rolling in the intestinal microvasculature. Am J Pathol 167(6):1647–1660

    Article  PubMed  CAS  Google Scholar 

  40. Perretti M, Szabo C, Thiemermann C (1995) Effect of interleukin-4 and interleukin-10 on ­leucocyte migration and nitric oxide production in the mouse. Br J Pharmacol 116(4):2251–2257

    Article  PubMed  CAS  Google Scholar 

  41. Cassatella MA (1998) The neutrophil: one of the cellular targets of interleukin-10. Int J Clin Lab Res 28(3):148–161

    Article  PubMed  CAS  Google Scholar 

  42. Ajuebor MN, Das AM, Virag L, Flower RJ, Szabo C, Perretti M (1999) Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J Immunol 162(3):1685–1691

    PubMed  CAS  Google Scholar 

  43. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW et al (2010) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28(12):2229–2238

    Article  PubMed  CAS  Google Scholar 

  44. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  PubMed  CAS  Google Scholar 

  45. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23(4):344–346

    Article  PubMed  CAS  Google Scholar 

  46. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311

    PubMed  CAS  Google Scholar 

  47. Valledor AF, Comalada M, Santamaria-Babi LF, Lloberas J, Celada A (2010) Macrophage proinflammatory activation and deactivation: a question of balance. Adv Immunol 108:1–20

    Article  PubMed  CAS  Google Scholar 

  48. Betancourt AM (2012) New Cell-Based Therapy Paradigm: Induction of Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells into Pro-Inflammatory MSC1 and Anti-inflammatory MSC2 Phenotypes. Adv Biochem Eng Biotechnol. 2012 Aug 7. [Epub ahead of print]

    Google Scholar 

  49. Prockop DJ and Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20:14–20

    Google Scholar 

  50. Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I et al (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5(2):e9252

    Article  PubMed  Google Scholar 

  51. Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A et al (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10):1856–1868

    Article  PubMed  CAS  Google Scholar 

  52. Brancato SK, Albina JE (2011) Wound macrophages as key regulators of repair origin, phenotype, and function. Am J Pathol 178(1):19–25

    Article  PubMed  CAS  Google Scholar 

  53. Parekkadan B, Upadhyay R, Dunham J, Iwamoto Y, Mizoguchi E, Mizoguchi A et al (2011) Bone marrow stromal cell transplants prevent experimental enterocolitis and require host CD11b(+) splenocytes. Gastroenterology 140(3):966–975

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by the DIR, NIDCR of the Intramural Research Program, NIH, and DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztián Németh M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Németh, K., Mezey, É. (2013). MSCs and Innate Immune Responses: A Balancing Act. In: Hematti, P., Keating, A. (eds) Mesenchymal Stromal Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5711-4_8

Download citation

Publish with us

Policies and ethics