Advertisement

MSCs as Therapeutics

  • Arnold I. Caplan
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Marrow has long been recognized as a source of osteoprogenitor cells. Such cells are a member of a heterogeneous group of cells that I have termed mesenchymal stem cells (MSCs) because they can be induced to form a number of differentiated mesenchymal cell types. With the realization that many of these MSCs are perivascular cells, pericytes, also comes the realization that they secrete a large array of bioactive molecules that are immunomodulator and trophic. In this context, the differentiation capabilities are less important than their medicinal capacity and their regenerative potential in a number of diseases and medical conditions. Thus, we propose the suggestion that they could be called medicinal signaling cells (MSCs).

Keywords

Amyotrophic Lateral Sclerosis Mesenchymal Stem Cell Demineralized Bone Matrix Fracture Repair Osteoprogenitor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Thomas ED, Blume KG (1999) Historical markers in the development of allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 5(6):341–346PubMedCrossRefGoogle Scholar
  2. 2.
    Weiss L (1976) The hematopoietic microenvironment of the bone marrow: an Ultrastructural study of the stroma in rats. Anat Rec 186(2):161–184PubMedCrossRefGoogle Scholar
  3. 3.
    Charbord AP, Tavian M, Humeau L, Peault B (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical stud of hematopoiesis and its microenvironment. Blood 87(10):4109–4119PubMedGoogle Scholar
  4. 4.
    Caplan AI (1984) Cartilage. Sci Am 251(4):84–94PubMedCrossRefGoogle Scholar
  5. 5.
    Caplan AI, Fiszman MY, Eppenberger HM (1983) Molecular and cell isoforms during development. Science 221(4614):921–927PubMedCrossRefGoogle Scholar
  6. 6.
    Caplan AI (1988) Biomaterials and bone repair. Biomaterials 87:15–24Google Scholar
  7. 7.
    Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650PubMedCrossRefGoogle Scholar
  8. 8.
    Caplan AI (1994) The mesengenic process. Clin Plast Surg 21(3):429–435PubMedGoogle Scholar
  9. 9.
    Connolly JF (1998) Clinical use of marrow osteoprogenitor cells to stimulate osteogenesis. Clin Orthop Relat Res 355:S257–S266PubMedCrossRefGoogle Scholar
  10. 10.
    Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230PubMedCrossRefGoogle Scholar
  11. 11.
    Friedenstein AJ, Petrakova KV, Kurolesova AL, Frolova GP (1968) Heterotopic of bone marrow analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247PubMedCrossRefGoogle Scholar
  12. 12.
    Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60PubMedGoogle Scholar
  13. 13.
    Caplan AI (1987) Bone development and repair. Bioessays 6(4):171–175PubMedCrossRefGoogle Scholar
  14. 14.
    Caplan AI, Pechak DG (1987) The cellular and molecular embryology of bone formation. In: Peck WA (ed) Bone and mineral research, vol 5. Elsevier, New YorkGoogle Scholar
  15. 15.
    Bruder SP, Caplan AI (1990) Osteogenic cell lineage analysis is facilitated by organ culture of embryonic chick periosteum. Dev Biol 141(2):319–329PubMedCrossRefGoogle Scholar
  16. 16.
    Lindholm TS, Urist MR (1980) A quantitative analysis of new bone formation by induction in compositive grafts of bone. Marrow and bone matrix. Clin Orthop Relat Res 150:288–300PubMedGoogle Scholar
  17. 17.
    Urist MR, DeLange RJ, Finerman GA (1983) Bone cell differentiation and growth factors. Science 220:680–686PubMedCrossRefGoogle Scholar
  18. 18.
    Caplan AI (1990) Cartilage begets bone versus endochondral myelopoiesis. Clin Orthop Relat Res 261:257–267PubMedGoogle Scholar
  19. 19.
    Reddi AH (1981) Cell biology and biochemistry of endochondral bone development. Coll Relat Res 1(2):209–226PubMedCrossRefGoogle Scholar
  20. 20.
    Owen M (1985) Lineage of osteogenic cells and their relationship to the stromal system. In: Peck WA (ed) Bone and mineral research, vol 3. Excerpta Medica, Amsterdam, pp 1–25Google Scholar
  21. 21.
    Mackay DL, Tesar PJ, Liang LN, Haynesworth SE (2006) Characterizing medullary and human mesenchymal stem cell-derived adipocytes. J Cell Physiol 207(3):722–728PubMedCrossRefGoogle Scholar
  22. 22.
    Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration. J Cell Biochem 56(3):283–294PubMedCrossRefGoogle Scholar
  23. 23.
    Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13(1):81–88PubMedCrossRefGoogle Scholar
  24. 24.
    Nakahara H, Goldberg VM, Caplan AI (1991) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 9(4):465–476PubMedCrossRefGoogle Scholar
  25. 25.
    Nishimura K, Solchaga LA, Caplan AI, Yoo JU, Goldberg VM, Johnstone B (1999) Chondroprogenitor cells of synovial tissue. Arthritis Rheum 42(12):2631–2637PubMedCrossRefGoogle Scholar
  26. 26.
    Goshima J, Goldberg VM, Caplan AI (1991) Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 12:253–258PubMedCrossRefGoogle Scholar
  27. 27.
    Bruder SP, Caplan AI (2000) Bone regeneration through cellular engineering. In: Lanza R, Langer R, Vancanti J (eds) Principles in tissue engineering, 2nd edn. Springer, New York, pp 683–696CrossRefGoogle Scholar
  28. 28.
    Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM et al (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80(12):1745–1757PubMedGoogle Scholar
  29. 29.
    Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow ­mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426PubMedCrossRefGoogle Scholar
  30. 30.
    Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176(1):57–66PubMedCrossRefGoogle Scholar
  31. 31.
    Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ (1998) Use of mesenchymal stem cells in Achilles tendon repair. J Orthop Res 16(4):406–413PubMedCrossRefGoogle Scholar
  32. 32.
    Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI (1995) Ex-vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells) (MPCs): implications for therapeutic use. Bone Marrow Transplant 16(4):557–564PubMedGoogle Scholar
  33. 33.
    Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al (2000) Rapid hematopoietic recovery after co-infusion of autologous blood stem cells and culture expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high dose chemotherapy. J Clin Oncol 18:307–316PubMedGoogle Scholar
  34. 34.
    Haynesworth SE, Baber MA, Caplan AI (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and il-1α. J Cell Physiol 166(3):585–592PubMedCrossRefGoogle Scholar
  35. 35.
    Carrino DA, Rodriguez JP, Caplan AI (1997) Dermatan sulfate proteoglycans from the mineralized matrix of the avian eggshell. Connect Tissue Res 36(3):175–193PubMedCrossRefGoogle Scholar
  36. 36.
    Caplan AI (2003) Design parameters for functional tissue engineering. In: Guilak F, Butler DL, Goldstein SA, Mooney DJ (eds) Functional tissue engineering. Springer, New YorkGoogle Scholar
  37. 37.
    Lee JY, Qu-Petersen Z, Cao B, Kimura S, Jankowski R, Cummins J et al (2000) Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150(5):1085–1100PubMedCrossRefGoogle Scholar
  38. 38.
    Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T et al (2006) Cartilage repair using bone morphogenetic protein 4 and muscle derived stem cells. Arthritis Rheum 54(2):433–442PubMedCrossRefGoogle Scholar
  39. 39.
    Crisan M, Deasy B, Gavina J, Zheng B, Huard J, Lazzari L et al (2008) Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: myoendothelial cells and pericytes. Methods Cell Biol 86:295–309PubMedCrossRefGoogle Scholar
  40. 40.
    Sacchetti B, Funari A, Michienzi S, DiCesare S, Piersanti S, Saggio I et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336PubMedCrossRefGoogle Scholar
  41. 41.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313PubMedCrossRefGoogle Scholar
  42. 42.
    Meirelles LDS, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5–6):419–427CrossRefGoogle Scholar
  43. 43.
    Meirelles LDS, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299CrossRefGoogle Scholar
  44. 44.
    Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 54(4):1222–1232PubMedCrossRefGoogle Scholar
  45. 45.
    Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102(1):77–85PubMedCrossRefGoogle Scholar
  46. 46.
    In’t Anker PS, Scherion SA, Kleijburg-vander Keur C, de Goot-Swings GM, Claas FH, Fibbe WE (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1346CrossRefGoogle Scholar
  47. 47.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301PubMedCrossRefGoogle Scholar
  48. 48.
    Osiris Therapeutics, Inc. [Internet]. http://www.osiris.com/
  49. 49.
    Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084PubMedCrossRefGoogle Scholar
  50. 50.
    Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI (2010) Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol 299:L760–L770PubMedCrossRefGoogle Scholar
  51. 51.
    Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD et al (2009) Human bone marrow-derived mesenchymal stem cells induce th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57:1192–1203PubMedCrossRefGoogle Scholar
  52. 52.
    Ko IK, Kim B-G et al (2010) Targeting improves MSC treatment of inflammatory bowel disease. Mol Ther 18(7):1365–1372PubMedCrossRefGoogle Scholar
  53. 53.
    Iyer SS, Rojas M (2008) Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opin Biol Ther 8(5):569–581PubMedCrossRefGoogle Scholar
  54. 54.
    Illingworth CM (1975) Trapped fingers amputated finger tips in children. J Pediatr Surg 9(6):853–858CrossRefGoogle Scholar
  55. 55.
    Caplan AI (2010) What’s in a name? Tissue Eng Part A 16(8):2415–2417PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biology, Skeletal Research CenterCase Western Reserve UniversityClevelandUSA

Personalised recommendations