MSCs for Diabetes

  • Luca Inverardi
  • Giacomo Lanzoni
  • Juan Dominguez-Bendala
  • Camillo Ricordi
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Mesenchymal stromal cells (also often referred to as mesenchymal stem cells, MSCs) hold promise as a powerful tool in the treatment of human diseases. Because of their potent immunomodulatory properties, they are likely to impact in a positive fashion diseases in which inflammation and/or autoimmunity play a key role. Furthermore, they have been shown to possess plasticity as precursors of cells of various types. Their differentiation potential could span cell differentiation products that do not normally derive from the mesoderm, including cells of endodermal origin. These two remarkable features make them potentially ideal candidates for regenerative approaches. This chapter will briefly discuss the current state of the art in the emerging field of their use for autoimmune type 1 diabetes.


Beta Cell Diabetic Mouse Islet Transplantation Islet Graft Autologous MSCs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300, Epub 2010/05/01PubMedGoogle Scholar
  2. 2.
    Peng H, Hagopian W (2006) Environmental factors in the development of type 1 diabetes. Rev Endocr Metab Disord 7(3):149–162, Epub 2007/01/05PubMedGoogle Scholar
  3. 3.
    Rosenbloom AL (2007) Hyperglycemic crises and their complications in children. J Pediatr Endocrinol Metab 20(1):5–18, Epub 2007/02/24PubMedGoogle Scholar
  4. 4.
    Mehta SN, Wolfsdorf JI (2010) Contemporary management of patients with type 1 diabetes. Endocrinol Metab Clin North Am 39(3):573–593, Epub 2010/08/21PubMedGoogle Scholar
  5. 5.
    Ricordi C, Strom TB (2004) Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol 4(4):259–268, Epub 2004/04/02PubMedGoogle Scholar
  6. 6.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP et al (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355(13):1318–1330, Epub 2006/09/29PubMedGoogle Scholar
  7. 7.
    Poggioli R, Faradji RN, Ponte G, Betancourt A, Messinger S, Baidal DA et al (2006) Quality of life after islet transplantation. Am J Transplant 6(2):371–378, Epub 2006/01/24PubMedGoogle Scholar
  8. 8.
    Thompson DM, Meloche M, Ao Z, Paty B, Keown P, Shapiro RJ et al (2011) Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation 91(3):373–378, Epub 2011/01/25PubMedGoogle Scholar
  9. 9.
    Van Belle T, von Herrath M (2008) Immunosuppression in islet transplantation. J Clin Invest 118(5):1625–1628, Epub 2008/04/24PubMedGoogle Scholar
  10. 10.
    Harlan DM, Kenyon NS, Korsgren O, Roep BO (2009) Current advances and travails in islet transplantation. Diabetes 58(10):2175–2184, Epub 2009/10/02PubMedGoogle Scholar
  11. 11.
    Leitao CB, Cure P, Tharavanij T, Baidal DA, Alejandro R (2008) Current challenges in islet transplantation. Curr Diab Rep 8(4):324–331, Epub 2008/07/18PubMedGoogle Scholar
  12. 12.
    Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA et al (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2(2):83–92, Epub 1974/01/01PubMedGoogle Scholar
  13. 13.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247, Epub 1968/03/01PubMedGoogle Scholar
  14. 14.
    Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214(2):413–421, Epub 2007/07/27PubMedGoogle Scholar
  15. 15.
    Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242, Epub 2000/06/10PubMedGoogle Scholar
  16. 16.
    Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21(1):105–110, Epub 2003/01/17PubMedGoogle Scholar
  17. 17.
    Prasanna SJ, Gopalakrishnan D, Shankar SR, Vasandan AB (2010) Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One 5(2):e9016, Epub 2010/02/04PubMedGoogle Scholar
  18. 18.
    Kuo HC, Chiu CC, Chang WC, Sheen JM, Ou CY, Chen RF et al (2011) Use of proteomic differential displays to assess functional discrepancies and adjustments of human bone marrow- and Wharton jelly-derived mesenchymal stem cells. J Proteome Res 10(3):1305–1315, Epub 2010/12/16PubMedGoogle Scholar
  19. 19.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97(25):13625–13630, Epub 2000/11/23PubMedGoogle Scholar
  20. 20.
    De Bari C, Dell’Accio F, Luyten FP (2004) Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 50(1):142–150, Epub 2004/01/20PubMedGoogle Scholar
  21. 21.
    Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K et al (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264(1):51–62, Epub 2001/08/16PubMedGoogle Scholar
  22. 22.
    Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W et al (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13(10):1219–1227, Epub 2007/09/11PubMedGoogle Scholar
  23. 23.
    Covas DT, Piccinato CE, Orellana MD, Siufi JL, Silva WA Jr, Proto-Siqueira R et al (2005) Mesenchymal stem cells can be obtained from the human saphena vein. Exp Cell Res 309(2):340–344, Epub 2005/07/16PubMedGoogle Scholar
  24. 24.
    In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345, Epub 2004/12/08Google Scholar
  25. 25.
    Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, Farina F et al (2011) Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev 7(2):342–363, Epub 2010/10/26PubMedGoogle Scholar
  26. 26.
    Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3(1):e1451, Epub 2008/01/17PubMedGoogle Scholar
  27. 27.
    Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC et al (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7(5):393–395, Epub 2005/10/21PubMedGoogle Scholar
  28. 28.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317, Epub 2006/08/23PubMedGoogle Scholar
  29. 29.
    Hegyi B, Sagi B, Kovacs J, Kiss J, Urban VS, Meszaros G et al (2010) Identical, similar or different? Learning about immunomodulatory function of mesenchymal stem cells isolated from various mouse tissues: bone marrow, spleen, thymus and aorta wall. Int Immunol 22(7):551–559, Epub 2010/05/26PubMedGoogle Scholar
  30. 30.
    Bernardo ME, Pagliara D, Locatelli F (2012) Mesenchymal stromal cell therapy: a revolution in regenerative medicine? Bone Marrow Transplant 47(2):164–171, Epub 2011/04/12PubMedGoogle Scholar
  31. 31.
    Ren G, Su J, Zhang L, Zhao X, Ling W, L’Huillie A et al (2009) Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27(8):1954–1962, Epub 2009/06/23PubMedGoogle Scholar
  32. 32.
    Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S et al (2009) The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 126(2):220–232, Epub 2008/07/16PubMedGoogle Scholar
  33. 33.
    Bocelli-Tyndall C, Bracci L, Schaeren S, Feder-Mengus C, Barbero A, Tyndall A et al (2009) Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated by interleukins 2, 7 and 15. Ann Rheum Dis 68(8):1352–1359, Epub 2008/07/24PubMedGoogle Scholar
  34. 34.
    Valencic E, Piscianz E, Andolina M, Ventura A, Tommasini A (2010) The immunosuppressive effect of Wharton’s jelly stromal cells depends on the timing of their licensing and on lymphocyte activation. Cytotherapy 12(2):154–160, Epub 2010/01/19PubMedGoogle Scholar
  35. 35.
    da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299, Epub 2008/06/21PubMedGoogle Scholar
  36. 36.
    Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L et al (2008) A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 18(8):846–857, Epub 2008/07/09PubMedGoogle Scholar
  37. 37.
    Boissel L, Tuncer HH, Betancur M, Wolfberg A, Klingemann H (2008) Umbilical cord mesenchymal stem cells increase expansion of cord blood natural killer cells. Biol Blood Marrow Transplant 14(9):1031–1038, Epub 2008/08/30PubMedGoogle Scholar
  38. 38.
    Kode JA, Mukherjee S, Joglekar MV, Hardikar AA (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11(4):377–391, Epub 2009/07/02PubMedGoogle Scholar
  39. 39.
    Marigo I, Dazzi F (2011) The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol 33(6):593–602, Epub 2011/04/19PubMedGoogle Scholar
  40. 40.
    Bunnell BA, Betancourt AM, Sullivan DE (2010) New concepts on the immune modulation mediated by mesenchymal stem cells. Stem Cell Res Ther 1(5):34, Epub 2010/11/26PubMedGoogle Scholar
  41. 41.
    Kronsteiner B, Wolbank S, Peterbauer A, Hackl C, Redl H, van Griensven M et al (2011) Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells. Stem Cells Dev 20(12):2115–2126, Epub 2011/03/09PubMedGoogle Scholar
  42. 42.
    Siegel G, Schafer R, Dazzi F (2009) The immunosuppressive properties of mesenchymal stem cells. Transplantation 87(9 Suppl):S45–S49, Epub 2009/05/14PubMedGoogle Scholar
  43. 43.
    Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H (2010) Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation 90(12):1312–1320, Epub 2010/11/03PubMedGoogle Scholar
  44. 44.
    Sioud M, Mobergslien A, Boudabous A, Floisand Y (2011) Mesenchymal stem cell-mediated T cell suppression occurs through secreted galectins. Int J Oncol 38(2):385–390, Epub 2010/12/18PubMedGoogle Scholar
  45. 45.
    Madec AM, Mallone R, Afonso G, Abou Mrad E, Mesnier A, Eljaafari A et al (2009) Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 52(7):1391–1399, Epub 2009/05/08PubMedGoogle Scholar
  46. 46.
    Jurewicz M, Yang S, Augello A, Godwin JG, Moore RF, Azzi J et al (2010) Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes 59(12):3139–3147, Epub 2010/09/16PubMedGoogle Scholar
  47. 47.
    Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S et al (2009) Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol 183(2):993–1004, Epub 2009/06/30PubMedGoogle Scholar
  48. 48.
    Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA 103(46):17438–17443, Epub 2006/11/08PubMedGoogle Scholar
  49. 49.
    Bell GI, Broughton HC, Levac KD, Allan DA, Xenocostas A, Hess DA (2012) Transplanted human bone marrow progenitor subtypes stimulate endogenous islet regeneration and revascularization. Stem Cells Dev 21(1):97–109, Epub 2011/03/23PubMedGoogle Scholar
  50. 50.
    Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14(6):631–640, Epub 2008/05/21PubMedGoogle Scholar
  51. 51.
    Ezquer F, Ezquer M, Simon V, Conget P (2011) The antidiabetic effect of MSCs is not impaired by insulin prophylaxis and is not improved by a second dose of cells. PLoS One 6(1):e16566, Epub 2011/02/10PubMedGoogle Scholar
  52. 52.
    Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A et al (2009) Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun 32(1):33–42, Epub 2008/12/09PubMedGoogle Scholar
  53. 53.
    Urban VS, Kiss J, Kovacs J, Gocza E, Vas V, Monostori E et al (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26(1):244–253, Epub 2007/10/13PubMedGoogle Scholar
  54. 54.
    Zanone MM, Favaro E, Miceli I, Grassi G, Camussi E, Caorsi C et al (2010) Human mesenchymal stem cells modulate cellular immune response to islet antigen glutamic acid decarboxylase in type 1 diabetes. J Clin Endocrinol Metab 95(8):3788–3797, Epub 2010/05/15PubMedGoogle Scholar
  55. 55.
    Khan M, Akhtar S, Mohsin S, N Khan S, Riazuddin S (2011) Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev 20(1):67–75, Epub 2010/05/08PubMedGoogle Scholar
  56. 56.
    Dong QY, Chen L, Gao GQ, Wang L, Song J, Chen B et al (2008) Allogeneic diabetic mesenchymal stem cells transplantation in streptozotocin-induced diabetic rat. Clin Invest Med 31(6):E328–E337, Epub 2008/11/27PubMedGoogle Scholar
  57. 57.
    Johansson U, Rasmusson I, Niclou SP, Forslund N, Gustavsson L, Nilsson B et al (2008) Formation of composite endothelial cell-mesenchymal stem cell islets: a novel approach to promote islet revascularization. Diabetes 57(9):2393–2401, Epub 2008/06/04PubMedGoogle Scholar
  58. 58.
    Duprez IR, Johansson U, Nilsson B, Korsgren O, Magnusson PU (2011) Preparatory studies of composite mesenchymal stem cell islets for application in intraportal islet transplantation. Ups J Med Sci 116(1):8–17, Epub 2010/11/06PubMedGoogle Scholar
  59. 59.
    Park KS, Kim YS, Kim JH, Choi B, Kim SH, Tan AH et al (2010) Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation 89(5):509–517, Epub 2010/02/04PubMedGoogle Scholar
  60. 60.
    Jung EJ, Kim SC, Wee YM, Kim YH, Choi MY, Jeong SH et al (2011) Bone marrow-derived mesenchymal stromal cells support rat pancreatic islet survival and insulin secretory function in vitro. Cytotherapy 13(1):19–29, Epub 2010/12/15PubMedGoogle Scholar
  61. 61. NCT00690066. Available from:,2012
  62. 62. NCT01068951. Available from:,2012
  63. 63.
    Solari MG, Srinivasan S, Boumaza I, Unadkat J, Harb G, Garcia-Ocana A et al (2009) Marginal mass islet transplantation with autologous mesenchymal stem cells promotes long-term islet allograft survival and sustained normoglycemia. J Autoimmun 32(2):116–124, Epub 2009/02/17PubMedGoogle Scholar
  64. 64.
    Figliuzzi M, Cornolti R, Perico N, Rota C, Morigi M, Remuzzi G et al (2009) Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc 41(5):1797–1800, Epub 2009/06/24PubMedGoogle Scholar
  65. 65.
    Rackham CL, Chagastelles PC, Nardi NB, Hauge-Evans AC, Jones PM, King AJ (2011) Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia 54(5):1127–1135, Epub 2011/01/27PubMedGoogle Scholar
  66. 66.
    Ito T, Itakura S, Todorov I, Rawson J, Asari S, Shintaku J et al (2010) Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 89(12):1438–1445, Epub 2010/06/24PubMedGoogle Scholar
  67. 67.
    Jacobson S, Kumagai-Braesch M, Tibell A, Svensson M, Flodstrom-Tullberg M (2008) Co-transplantation of stromal cells interferes with the rejection of allogeneic islet grafts. Ann N Y Acad Sci 1150:213–216, Epub 2009/01/06PubMedGoogle Scholar
  68. 68.
    Longoni B, Szilagyi E, Quaranta P, Paoli GT, Tripodi S, Urbani S et al (2010) Mesenchymal stem cells prevent acute rejection and prolong graft function in pancreatic islet transplantation. Diabetes Technol Ther 12(6):435–446, Epub 2010/05/18PubMedGoogle Scholar
  69. 69.
    Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ (2009) Mesenchymal stem cells prevent the rejection of fully allogeneic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58(8):1797–1806, Epub 2009/06/11PubMedGoogle Scholar
  70. 70.
    Huang Y, Chen P, Zhang CB, Ko GJ, Ruiz M, Fiorina P et al (2010) Kidney-derived mesenchymal stromal cells modulate dendritic cell function to suppress alloimmune responses and delay allograft rejection. Transplantation 90(12):1307–1311, Epub 2010/11/05PubMedGoogle Scholar
  71. 71.
    Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D et al (2008) Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 181(6):3933–3946, Epub 2008/09/05PubMedGoogle Scholar
  72. 72.
    Kim YH, Wee YM, Choi MY, Lim DG, Kim SC, Han DJ (2011) Interleukin (IL)-10 induced by CD11b(+) cells and IL-10-activated regulatory T cells play a role in immune modulation of mesenchymal stem cells in rat islet allografts. Mol Med 17(7–8):697–708, Epub 2011/03/03PubMedGoogle Scholar
  73. 73.
    Jung YJ, Ju SY, Yoo ES, Cho SJ, Cho KA, Woo SY et al (2007) MSC-DC interactions: MSC inhibit maturation and migration of BM-derived DC. Cytotherapy 9(5):451–458, Epub 2007/09/06PubMedGoogle Scholar
  74. 74.
    Najar M, Rouas R, Raicevic G, Boufker HI, Lewalle P, Meuleman N et al (2009) Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy 11(5):570–583, Epub 2009/07/01PubMedGoogle Scholar
  75. 75.
    Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W et al (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184(5):2321–2328, Epub 2010/02/05PubMedGoogle Scholar
  76. 76.
    Jones BJ, Brooke G, Atkinson K, McTaggart SJ (2007) Immunosuppression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells. Placenta 28(11–12):1174–1181, Epub 2007/08/24PubMedGoogle Scholar
  77. 77.
    Nasef A, Chapel A, Mazurier C, Bouchet S, Lopez M, Mathieu N et al (2007) Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expr 13(4–5):217–226, Epub 2007/07/04PubMedGoogle Scholar
  78. 78.
    Selmani Z, Naji A, Gaiffe E, Obert L, Tiberghien P, Rouas-Freiss N et al (2009) HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation 87(9 Suppl):S62–S66, Epub 2009/05/14PubMedGoogle Scholar
  79. 79.
    Sioud M, Mobergslien A, Boudabous A, Floisand Y (2010) Evidence for the involvement of galectin-3 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scand J Immunol 71(4):267–274, Epub 2010/04/14PubMedGoogle Scholar
  80. 80.
    Najar M, Raicevic G, Boufker HI, Fayyad-Kazan H, De Bruyn C, Meuleman N et al (2010) Adipose-tissue-derived and Wharton’s jelly-derived mesenchymal stromal cells suppress lymphocyte responses by secreting leukemia inhibitory factor. Tissue Eng Part A 16(11):3537–3546, Epub 2010/07/06PubMedGoogle Scholar
  81. 81.
    Berman DM, Willman MA, Han D, Kleiner G, Kenyon NM, Cabrera O et al (2010) Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 59(10):2558–2568, Epub 2010/07/14PubMedGoogle Scholar
  82. 82.
    Ohmura Y, Tanemura M, Kawaguchi N, Machida T, Tanida T, Deguchi T et al (2010) Combined transplantation of pancreatic islets and adipose tissue-derived stem cells enhances the survival and insulin function of islet grafts in diabetic mice. Transplantation 90(12):1366–1373, Epub 2010/11/16PubMedGoogle Scholar
  83. 83.
    Sordi V, Melzi R, Mercalli A, Formicola R, Doglioni C, Tiboni F et al (2010) Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells 28(1):140–151, Epub 2009/11/20PubMedGoogle Scholar
  84. 84.
    Huang CY, Pelaez D, Dominguez-Bendala J, Garcia-Godoy F, Cheung HS (2009) Plasticity of stem cells derived from adult periodontal ligament. Regen Med 4(6):809–821, Epub 2009/11/12PubMedGoogle Scholar
  85. 85.
    Prabakar KR, Dominguez-Bendala J, Molano RD, Pileggi A, Villate S, Ricordi C et al (2011) Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplantation, Vol. 21, pp. 1321–1339, 2012.Google Scholar
  86. 86.
    D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117(Pt 14): 2971–2981, Epub 2004/06/03PubMedGoogle Scholar
  87. 87.
    Prigozhina TB, Khitrin S, Elkin G, Eizik O, Morecki S, Slavin S (2008) Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Exp Hematol 36(10):1370–1376, Epub 2008/07/16PubMedGoogle Scholar
  88. 88.
    Trounson A (2009) New perspectives in human stem cell therapeutic research. BMC Med 7:29, Epub 2009/06/13PubMedGoogle Scholar
  89. 89.
    Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I et al (2009) Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev 5(4):378–386, Epub 2010/01/09PubMedGoogle Scholar
  90. 90.
    Montesinos JJ, Flores-Figueroa E, Castillo-Medina S, Flores-Guzman P, Hernandez-Estevez E, Fajardo-Orduna G et al (2009) Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy 11(2):163–176, Epub 2009/01/20PubMedGoogle Scholar
  91. 91.
    Pilz GA, Ulrich C, Ruh M, Abele H, Schafer R, Kluba T et al (2011) Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells. Stem Cells Dev 20(4):635–646, Epub 2010/11/05PubMedGoogle Scholar
  92. 92.
    Secco M, Moreira YB, Zucconi E, Vieira NM, Jazedje T, Muotri AR et al (2009) Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev 5(4):387–401, Epub 2010/01/09PubMedGoogle Scholar
  93. 93.
    Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806, Epub 2009/09/22PubMedGoogle Scholar
  94. 94.
    Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, Choolani MA et al (2009) Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells 27(1):126–137, Epub 2008/10/04PubMedGoogle Scholar
  95. 95.
    Bonner-Weir S, Weir G (2009) Insulin-producing cells derived from stem cells: a potential treatment for diabetes. In: Lanza R, Gearhart J, Hogan B, Melton D, Pederson R, Thomas ED et al (eds) Essentials of stem cell biology, 2nd edn. San Diego, Elsevier Inc, pp 513–521Google Scholar
  96. 96.
    D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401, Epub 2006/10/21PubMedGoogle Scholar
  97. 97.
    Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452, Epub 2008/02/22PubMedGoogle Scholar
  98. 98.
    McLean AB, D’Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM et al (2007) Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25(1):29–38, Epub 2007/01/06PubMedGoogle Scholar
  99. 99.
    Furth ME, Atala A (2009) Stem cell sources to treat diabetes. J Cell Biochem 106(4):507–511, Epub 2009/01/09PubMedGoogle Scholar
  100. 100.
    Matveyenko AV, Georgia S, Bhushan A, Butler PC (2010) Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats. Am J Physiol Endocrinol Metab 299(5):E713–E720, Epub 2010/07/01PubMedGoogle Scholar
  101. 101.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676, Epub 2006/08/15PubMedGoogle Scholar
  102. 102.
    Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 54(4):1222–1232, Epub 2006/03/31PubMedGoogle Scholar
  103. 103.
    Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429(6987):41–46, Epub 2004/05/07PubMedGoogle Scholar
  104. 104.
    Teta M, Rankin MM, Long SY, Stein GM, Kushner JA (2007) Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 12(5):817–826, Epub 2007/05/10PubMedGoogle Scholar
  105. 105.
    Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B et al (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50(3):521–533, Epub 2001/03/15PubMedGoogle Scholar
  106. 106.
    Huang H, Tang X (2003) Phenotypic determination and characterization of nestin-positive precursors derived from human fetal pancreas. Lab Invest 83(4):539–547, Epub 2003/04/16PubMedGoogle Scholar
  107. 107.
    Zhang L, Hong TP, Hu J, Liu YN, Wu YH, Li LS (2005) Nestin-positive progenitor cells isolated from human fetal pancreas have phenotypic markers identical to mesenchymal stem cells. World J Gastroenterol 11(19):2906–2911, Epub 2005/05/20PubMedGoogle Scholar
  108. 108.
    Gershengorn MC, Hardikar AA, Wei C, Geras-Raaka E, Marcus-Samuels B, Raaka BM (2004) Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306(5705):2261–2264, Epub 2004/11/27PubMedGoogle Scholar
  109. 109.
    Ouziel-Yahalom L, Zalzman M, Anker-Kitai L, Knoller S, Bar Y, Glandt M et al (2006) Expansion and redifferentiation of adult human pancreatic islet cells. Biochem Biophys Res Commun 341(2):291–298, Epub 2006/02/01PubMedGoogle Scholar
  110. 110.
    Chase LG, Ulloa-Montoya F, Kidder BL, Verfaillie CM (2007) Islet-derived fibroblast-like cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulin-positive cells. Diabetes 56(1):3–7, Epub 2006/11/18PubMedGoogle Scholar
  111. 111.
    Russ HA, Bar Y, Ravassard P, Efrat S (2008) In vitro proliferation of cells derived from adult human beta-cells revealed by cell-lineage tracing. Diabetes 57(6):1575–1583, Epub 2008/03/05PubMedGoogle Scholar
  112. 112.
    Russ HA, Ravassard P, Kerr-Conte J, Pattou F, Efrat S (2009) Epithelial-mesenchymal transition in cells expanded in vitro from lineage-traced adult human pancreatic beta cells. PLoS One 4(7):e6417, Epub 2009/07/31PubMedGoogle Scholar
  113. 113.
    Smukler SR, Arntfield ME, Razavi R, Bikopoulos G, Karpowicz P, Seaberg R et al (2011) The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8(3):281–293, Epub 2011/03/03PubMedGoogle Scholar
  114. 114.
    Eberhardt M, Salmon P, von Mach MA, Hengstler JG, Brulport M, Linscheid P et al (2006) Multipotential nestin and Isl1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun 345(3):1167–1176, Epub 2006/05/23PubMedGoogle Scholar
  115. 115.
    Gallo R, Gambelli F, Gava B, Sasdelli F, Tellone V, Masini M et al (2007) Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets. Cell Death Differ 14(11):1860–1871, Epub 2007/07/07PubMedGoogle Scholar
  116. 116.
    Karaoz E, Ayhan S, Gacar G, Aksoy A, Duruksu G, Okcu A et al (2010) Isolation and characterization of stem cells from pancreatic islet: pluripotency, differentiation potential and ultrastructural characteristics. Cytotherapy 12(3):288–302, Epub 2010/03/17PubMedGoogle Scholar
  117. 117.
    Davani B, Ikonomou L, Raaka BM, Geras-Raaka E, Morton RA, Marcus-Samuels B et al (2007) Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo. Stem Cells 25(12):3215–3222, Epub 2007/09/29PubMedGoogle Scholar
  118. 118.
    Davani B, Ariely S, Ikonomou L, Oron Y, Gershengorn MC (2009) Human islet-derived precursor cells can cycle between epithelial clusters and mesenchymal phenotypes. J Cell Mol Med 13(8B):2570–2581, Epub 2009/01/30PubMedGoogle Scholar
  119. 119.
    Mutskov V, Raaka BM, Felsenfeld G, Gershengorn MC (2007) The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells 25(12):3223–3233, Epub 2007/09/29PubMedGoogle Scholar
  120. 120.
    Wilson LM, Wong SH, Yu N, Geras-Raaka E, Raaka BM, Gershengorn MC (2009) Insulin but not glucagon gene is silenced in human pancreas-derived mesenchymal stem cells. Stem Cells 27(11):2703–2711, Epub 2009/09/29PubMedGoogle Scholar
  121. 121.
    Limbert C, Ebert R, Schilling T, Path G, Benisch P, Klein-Hitpass L et al (2010) Functional signature of human islet-derived precursor cells compared to bone marrow-derived mesenchymal stem cells. Stem Cells Dev 19(5):679–691, Epub 2009/11/10PubMedGoogle Scholar
  122. 122.
    Carlotti F, Zaldumbide A, Loomans CJ, van Rossenberg E, Engelse M, de Koning EJ et al (2010) Isolated human islets contain a distinct population of mesenchymal stem cells. Islets 2(3):164–173, Epub 2010/11/26PubMedGoogle Scholar
  123. 123.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313, Epub 2008/09/13PubMedGoogle Scholar
  124. 124.
    Conklin JL (1962) Cytogenesis of the human fetal pancreas. Am J Anat 111:181–193, Epub 1962/09/01PubMedGoogle Scholar
  125. 125.
    Lin HT, Chiou SH, Kao CL, Shyr YM, Hsu CJ, Tarng YW et al (2006) Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting. World J Gastroenterol 12(28):4529–4535, Epub 2006/07/29PubMedGoogle Scholar
  126. 126.
    Seeberger KL, Dufour JM, Shapiro AM, Lakey JR, Rajotte RV, Korbutt GS (2006) Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab Invest 86(2):141–153, Epub 2006/01/13PubMedGoogle Scholar
  127. 127.
    Baertschiger RM, Bosco D, Morel P, Serre-Beinier V, Berney T, Buhler LH et al (2008) Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development. Pancreas 37(1):75–84, Epub 2008/06/27PubMedGoogle Scholar
  128. 128.
    Chen LB, Jiang XB, Yang L (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 10(20):3016–3020, Epub 2004/09/21PubMedGoogle Scholar
  129. 129.
    Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE (2004) Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84(5):607–617, Epub 2004/03/23PubMedGoogle Scholar
  130. 130.
    Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW (2005) In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 330(4):1299–1305, Epub 2005/04/13PubMedGoogle Scholar
  131. 131.
    Wu XH, Liu CP, Xu KF, Mao XD, Zhu J, Jiang JJ et al (2007) Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol 13(24):3342–3349, Epub 2007/07/31PubMedGoogle Scholar
  132. 132.
    Paz AH, Salton GD, Ayala-Lugo A, Gomes C, Terraciano P, Scalco R et al (2011) Betacellulin overexpression in mesenchymal stem cells induces insulin secretion in vitro and ameliorates streptozotocin-induced hyperglycemia in rats. Stem Cells Dev 20(2):223–232, Epub 2010/09/15PubMedGoogle Scholar
  133. 133.
    Moriscot C, de Fraipont F, Richard MJ, Marchand M, Savatier P, Bosco D et al (2005) Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 23(4):594, Epub 2005/03/26PubMedGoogle Scholar
  134. 134.
    Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H et al (2007) Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 211(1):36–44, Epub 2007/01/18PubMedGoogle Scholar
  135. 135.
    Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25(11):2837–2844, Epub 2007/07/07PubMedGoogle Scholar
  136. 136.
    Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L et al (2007) Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J 120(9):771–776, Epub 2007/05/29PubMedGoogle Scholar
  137. 137.
    Phadnis SM, Ghaskadbi SM, Hardikar AA, Bhonde RR (2009) Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. Rev Diabet Stud 6(4):260–270, Epub 2010/01/01PubMedGoogle Scholar
  138. 138.
    Xie QP, Huang H, Xu B, Dong X, Gao SL, Zhang B et al (2009) Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation 77(5):483–491, Epub 2009/06/10PubMedGoogle Scholar
  139. 139.
    Limbert C, Path G, Ebert R, Rothhammer V, Kassem M, Jakob F et al (2011) PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages. Cytotherapy 13(7):802–813, Epub 2011/04/22PubMedGoogle Scholar
  140. 140.
    Mosna F, Sensebe L, Krampera M (2010) Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev 19(10):1449–1470, Epub 2010/05/22PubMedGoogle Scholar
  141. 141.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295, Epub 2002/12/12PubMedGoogle Scholar
  142. 142.
    Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U et al (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341(4):1135–1140, Epub 2006/02/08PubMedGoogle Scholar
  143. 143.
    Okura H, Komoda H, Fumimoto Y, Lee CM, Nishida T, Sawa Y et al (2009) Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J Artif Organs 12(2):123–130, Epub 2009/06/19PubMedGoogle Scholar
  144. 144.
    Kajiyama H, Hamazaki TS, Tokuhara M, Masui S, Okabayashi K, Ohnuma K et al (2010) Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. Int J Dev Biol 54(4):699–705, Epub 2009/09/17PubMedGoogle Scholar
  145. 145.
    Trivedi HL, Vanikar AV, Thakker U, Firoze A, Dave SD, Patel CN et al (2008) Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplant Proc 40(4):1135–1139, Epub 2008/06/17PubMedGoogle Scholar
  146. 146.
    Vanikar AV, Dave SD, Thakkar UG, Trivedi HL (2010) Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus. Stem Cells Int 2010:582382, Epub 2011/01/05PubMedGoogle Scholar
  147. 147.
    Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26(2):300–311, Epub 2007/11/03PubMedGoogle Scholar
  148. 148.
    Parolini O, Alviano F, Bergwerf I, Boraschi D, De Bari C, De Waele P et al (2010) Toward cell therapy using placenta-derived cells: disease mechanisms, cell biology, preclinical studies, and regulatory aspects at the round table. Stem Cells Dev 19(2):143–154, Epub 2009/12/02PubMedGoogle Scholar
  149. 149.
    Gao F, Wu DQ, Hu YH, Jin GX (2008) Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells. Chin Med J 121(9):811–818, Epub 2008/08/15PubMedGoogle Scholar
  150. 150.
    Gao F, Wu DQ, Hu YH, Jin GX, Li GD, Sun TW et al (2008) In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Transl Res 151(6):293–302, Epub 2008/06/03PubMedGoogle Scholar
  151. 151.
    Hu YH, Wu DQ, Gao F, Li GD, Yao L, Zhang XC (2009) A secretory function of human insulin-producing cells in vivo. Hepatobiliary Pancreat Dis Int 8(3):255–260, Epub 2009/06/09PubMedGoogle Scholar
  152. 152.
    Chang CM, Kao CL, Chang YL, Yang MJ, Chen YC, Sung BL et al (2007) Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun 357(2):414–420, Epub 2007/04/17PubMedGoogle Scholar
  153. 153.
    Kadam S, Muthyala S, Nair P, Bhonde R (2010) Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev Diabet Stud 7(2):168–182, Epub 2010/11/10PubMedGoogle Scholar
  154. 154.
    Chiou SH, Chen SJ, Chang YL, Chen YC, Li HY, Chen DT et al (2011) MafA promotes the reprogramming of placenta-derived multipotent stem cells into pancreatic islets-like and insulin  +  cells. J Cell Mol Med 15(3):612–624, Epub 2010/02/18PubMedGoogle Scholar
  155. 155.
    Giddings SJ, Carnaghi L (1989) Rat insulin II gene expression by extraplacental membranes. A non-pancreatic source for fetal insulin. J Biol Chem 264(16):9462–9469, Epub 1989/06/05PubMedGoogle Scholar
  156. 156.
    Giddings SJ, King CD, Harman KW, Flood JF, Carnaghi LR (1994) Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nat Genet 6(3):310–313, Epub 1994/03/01PubMedGoogle Scholar
  157. 157.
    Kadam SS, Bhonde RR (2010) Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells. Islets 2(2):112–120, Epub 2010/11/26PubMedGoogle Scholar
  158. 158.
    Wang HS, Shyu JF, Shen WS, Hsu HC, Chi TC, Chen CP et al (2011) Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant 20(3):455–466, Epub 2010/08/20PubMedGoogle Scholar
  159. 159.
    Nikolova G, Jabs N, Konstantinova I, Domogatskaya A, Tryggvason K, Sorokin L et al (2006) The vascular basement membrane: a niche for insulin gene expression and beta cell proliferation. Dev Cell 10(3):397–405, Epub 2006/03/07PubMedGoogle Scholar
  160. 160.
    Duvillie B, Attali M, Bounacer A, Ravassard P, Basmaciogullari A, Scharfmann R (2006) The mesenchyme controls the timing of pancreatic beta-cell differentiation. Diabetes 55(3):582–589, Epub 2006/03/01PubMedGoogle Scholar
  161. 161.
    Dominguez-Bendala J, Inverardi L, Ricordi C (2010) Stem cell-derived islet cells for transplantation. Current Opinion in Organ Transplantation. 16(1):76–82, Feb 2011. doi: 10.1097/MOT.0b013e32834252b5Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Luca Inverardi
    • 1
  • Giacomo Lanzoni
    • 1
  • Juan Dominguez-Bendala
    • 1
  • Camillo Ricordi
    • 1
  1. 1.Diabetes Research InstituteUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations