Advertisement

cGMP Production of MSCs

  • Derek J. Hei
  • David H. McKennaJr.
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Over the past decade, mesenchymal stromal/stem cells (MSCs) have evolved into an important cell therapy demonstrating potential utility in a range of clinical applications, including bone and cartilage repair, cardiac repair, and immune disorders. MSCs can be isolated from a variety of tissue sources, including bone marrow, adipose tissue, dental pulp, and placenta. Groups have developed different manufacturing processes with a goal of improving the quality of clinical-grade cells and the overall efficiency of the manufacturing process. Variations in cell source and manufacturing process may have a significant impact on the efficacy of the final MSC product. Moreover, this variability in cell source and manufacturing processes has made it challenging to compare the resulting MSC products and associated results from clinical trials that have been conducted to date. The development of consistent, well-controlled manufacturing processes along with the implementation of thorough quality control testing, including rigorous potency assays, will insure high quality and may help to clarify the impact of cell source and manufacturing process on the resulting MSC product. In addition to providing an overview of the current good manufacturing practice (cGMP) methods for MSC production, this chapter summarizes key FDA regulatory requirements, including those related to cell source, raw materials, and quality control testing.

Keywords

Umbilical Cord Blood Bovine Spongiform Encephalopathy Platelet Lysate Quality Control Testing Potency Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone ­marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247PubMedCrossRefGoogle Scholar
  2. 2.
    Dominici M, Le BK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317PubMedCrossRefGoogle Scholar
  3. 3.
    Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242PubMedCrossRefGoogle Scholar
  4. 4.
    Huang GTJ, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806PubMedCrossRefGoogle Scholar
  5. 5.
    Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring H Jr, Evangelista M et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26(2):300–311PubMedCrossRefGoogle Scholar
  6. 6.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228PubMedCrossRefGoogle Scholar
  7. 7.
    Lee K, Chan CK, Patil N, Goodman SB (2009) Cell therapy for bone regenerationGÇöBench to bedside. J Biomed Mater Res 89B(1):252–263CrossRefGoogle Scholar
  8. 8.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells (Dayton, Ohio) 25(11):2896–2902CrossRefGoogle Scholar
  9. 9.
    Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells (Dayton, Ohio) 25(11):2739–2749CrossRefGoogle Scholar
  10. 10.
    Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347PubMedCrossRefGoogle Scholar
  11. 11.
    Uccelli A, Pistoia V, Moretta L (2007) Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 28(5):219–226PubMedCrossRefGoogle Scholar
  12. 12.
    Prockop DJ (2007) “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 82(3):241–243PubMedCrossRefGoogle Scholar
  13. 13.
    Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884PubMedCrossRefGoogle Scholar
  14. 14.
    Dazzi F, Horwood NJ (2007) Potential of mesenchymal stem cell therapy. Curr Opin Oncol 19(6):650–655PubMedCrossRefGoogle Scholar
  15. 15.
    Brooke G, Cook M, Blair C, Han R, Heazlewood C, Jones B et al (2007) Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol 18(6):846–858PubMedCrossRefGoogle Scholar
  16. 16.
    Lanzoni G, Roda G, Belluzzi A, Roda E, Bagnara GP (2008) Inflammatory bowel disease: moving toward a stem cell-based therapy. World J Gastroenterol 14(29):4616–4626PubMedCrossRefGoogle Scholar
  17. 17.
    Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586PubMedCrossRefGoogle Scholar
  18. 18.
    FDA (2005) Human cells, tissues, and cellular and tissue-based products. Report No: 21Google Scholar
  19. 19.
    FDA (2007) Guidance for industry – regulation of human cells, tissues, and cellular and tissue-based products HCT/Ps – small entity compliance guide U.S. Department of Health and Human Services Food and Drug Administration Center for Biologies Evaluation and Research Rockville, MDGoogle Scholar
  20. 20.
    FDA (2008) Guidance for industry – CGMP for phase 1 investigational drugs U.S. Department of Health and Human Services Food and Drug Administration Center for Biologies Evaluation and Research Rockville, MDGoogle Scholar
  21. 21.
    FDA (1998) Guidance for industry – guidance for human somatic cell therapy and gene therapy. U.S. Department of Health and Human Services, Food and Drug Administration. Report No.: March 1998Google Scholar
  22. 22.
    ICH (2008) ICH harmonized tripartite guideline Q5D – derivation and characterization of cell substrates used for production of biotechnological/biological productsGoogle Scholar
  23. 23.
    FDA (1998) International conference on harmonization; Guidance on viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. Report No.: 63Google Scholar
  24. 24.
    FDA (2003) Guidance for industry – source animal, product, preclinical, and clinical issues concerning the use of xenotransplantation products in human U.S. Department of Health and Human Services Food and Drug Administration Center for Biologies Evaluation and Research Rockville, MDGoogle Scholar
  25. 25.
    FDA (2007) Guidance for industry – eligibility determination for donors of human cells, tissues, and cellular and tissue-based products (HCT/Ps) U.S. Department of Health and Human Services Food and Drug Administration Center for Biologies Evaluation and Research Rockville, MDGoogle Scholar
  26. 26.
    FDA (2004) Guidance for industry – sterile drug products produced by aseptic processing – current good manufacturing practice U.S. Department of Health and Human Services Food and Drug Administration Center for Biologies Evaluation and Research Rockville, MDGoogle Scholar
  27. 27.
    FACT-JACIE (2008) International standard for cellular therapy product collection, processing, and administrationGoogle Scholar
  28. 28.
    AABB (2009) Standards for cellular therapy product services, 4th edn. AABB, BethesdaGoogle Scholar
  29. 29.
    International Society for Stem Cell Research (2008) Guidelines for the clinical translation of stem cells Dec 3, 2008 ISSCR, Skokle, IL. United States Pharmacopeial Convention, Inc. Rockville, MDGoogle Scholar
  30. 30.
    U.S.Pharmacopeia (2009) Cell and gene therapy products, USP 32 p 436–466. United States Pharmacopeial Convention, Inc. Rockville, MDGoogle Scholar
  31. 31.
    U.S.Pharmacopeia (2009) Ancillary materials for cell, gene, and tissue-engineered products, USP 32 p 420–426. United States Pharmacopeial Convention, Inc. Rockville, MDGoogle Scholar
  32. 32.
    Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65(1):22–26PubMedGoogle Scholar
  33. 33.
    De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942PubMedCrossRefGoogle Scholar
  34. 34.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97(25):13625–13630PubMedCrossRefGoogle Scholar
  35. 35.
    In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells (Dayton, Ohio) 22(7):1338–1345CrossRefGoogle Scholar
  36. 36.
    In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R et al (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102(4):1548–1549CrossRefGoogle Scholar
  37. 37.
    Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells (Dayton, Ohio) 22(4):625–634CrossRefGoogle Scholar
  38. 38.
    Hoogduijn MJ, Crop MJ, Peeters AM, Van Osch GJ, Balk AH, Ijzermans JN et al (2007) Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells Dev 16(4):597–604PubMedCrossRefGoogle Scholar
  39. 39.
    Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129(1):118–129PubMedCrossRefGoogle Scholar
  40. 40.
    Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K (2003) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 32(3):265–272PubMedCrossRefGoogle Scholar
  41. 41.
    Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33(11):1402–1416PubMedCrossRefGoogle Scholar
  42. 42.
    Bouwmeester W, Fechter MM, Heymans MW, Twisk JWR, Ebeling LJ, Brand A (2010) Prediction of nucleated cells in bone marrow stem cell products by donor characteristics: a retrospective single centre analysis. Vox Sang 98(3):e276–e283PubMedCrossRefGoogle Scholar
  43. 43.
    Crisostomo PR, Markel TA, Wang MJ, Lahm T, Lillemoe KD, Meldrum DR (2007) In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power. Surgery 142(2):215–221PubMedCrossRefGoogle Scholar
  44. 44.
    Zhukareva V, Obrocka M, Houle JD, Fischer I, Neuhuber B (2010) Secretion profile of human bone marrow stromal cells: donor variability and response to inflammatory stimuli. Cytokine 50(3):317–321PubMedCrossRefGoogle Scholar
  45. 45.
    Samuelsson H, Ringden O, Lonnies H, Le Blanc K (2009) Optimizing in vitro conditions for immunomodulation and expansion of mesenchymal stromal cells. Cytotherapy 11(2):129–136PubMedCrossRefGoogle Scholar
  46. 46.
    Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA (2005) A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum 48(7):1416–1423PubMedCrossRefGoogle Scholar
  47. 47.
    Fang B, Song Y, Lin Q, Zhang Y, Cao Y, Zhao RC et al (2007) Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children. Pediatr Transplant 11(7):814–817PubMedCrossRefGoogle Scholar
  48. 48.
    Fang B, Li N, Song Y, Li J, Zhao RC, Ma Y (2009) Cotransplantation of haploidentical mesenchymal stem cells to enhance engraftment of hematopoietic stem cells and to reduce the risk of graft failure in two children with severe aplastic anemia. Pediatr Transplant 13(4):499–502PubMedCrossRefGoogle Scholar
  49. 49.
    Fang B, Song Y, Li N, Li J, Han Q, Zhao RC (2009) Mesenchymal stem cells for the ­treatment of refractory pure red cell aplasia after major ABO-incompatible hematopoietic stem cell transplantation. Ann Hematol 88(3):261–266PubMedCrossRefGoogle Scholar
  50. 50.
    Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827PubMedCrossRefGoogle Scholar
  51. 51.
    Wagner JE, Gluckman E (2010) Umbilical cord blood transplantation: the first 20 years. Semin Hematol 47(1):3–12PubMedCrossRefGoogle Scholar
  52. 52.
    Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86(10):1099–1100PubMedGoogle Scholar
  53. 53.
    Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374PubMedCrossRefGoogle Scholar
  54. 54.
    Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Oliver DA, Quinn CO et al (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7(11):581–588PubMedCrossRefGoogle Scholar
  55. 55.
    Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22(4):625–634PubMedCrossRefGoogle Scholar
  56. 56.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301PubMedCrossRefGoogle Scholar
  57. 57.
    Berger MJ, Adams SD, Tigges BM, Sprague SL, Wang XJ, Collins DP et al (2006) Differentiation of umbilical cord blood-derived multilineage progenitor cells into respiratory epithelial cells. Cytotherapy 8(5):480–487PubMedCrossRefGoogle Scholar
  58. 58.
    Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135PubMedCrossRefGoogle Scholar
  59. 59.
    Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675PubMedCrossRefGoogle Scholar
  60. 60.
    FDA (2006) Guidance for industry – implementation of acceptable full-length donor history questionnaire and accompanying materials for use in screeing donors of blood and blood components U.S. Department of Health and Human Services Food and Drug Administration Center for Biologies Evaluation and Research Rockville, MDGoogle Scholar
  61. 61.
    Sensebe L, Bourin P (2008) Producing MSC according GMP: process and controls. Biomed Mater Eng 18(4–5):173–177PubMedGoogle Scholar
  62. 62.
    Sensebe L (2008) Clinical grade production of mesenchymal stem cells. Biomed Mater Eng 18:S3–S10PubMedGoogle Scholar
  63. 63.
    Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells 24(5):1409–1410PubMedCrossRefGoogle Scholar
  64. 64.
    Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24(2):462–471PubMedCrossRefGoogle Scholar
  65. 65.
    Haack-Sorensen M, Friis T, Bindslev L, Mortensen S, Johnsen HE, Kastrup J (2008) Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy. Scand J Clin Lab Invest 68(3):192–203PubMedCrossRefGoogle Scholar
  66. 66.
    Pal R, Hanwate M, Totey SM (2008) Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation. J Tissue Eng Regen Med 2(7):436–444PubMedCrossRefGoogle Scholar
  67. 67.
    Meuleman N, Tondreau T, Delforge A, Dejeneffe M, Massy M, Libertalis M et al (2006) Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium. Eur J Haematol 76(4):309–316PubMedCrossRefGoogle Scholar
  68. 68.
    Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213(1):18–26PubMedCrossRefGoogle Scholar
  69. 69.
    Haack-Sorensen M, Bindslev L, Mortensen S, Friis T, Kastrup J (2007) The influence of freezing and storage on the characteristics and functions of human mesenchymal stromal cells isolated for clinical use. Cytotherapy 9(4):328–337PubMedCrossRefGoogle Scholar
  70. 70.
    Wagner W, Ho AD (2007) Mesenchymal stem cell preparations – comparing apples and oranges. Stem Cell Rev 3(4):239–248PubMedCrossRefGoogle Scholar
  71. 71.
    Burunova VV, Suzdaltseva YG, Voronov AV, Cheglakov IB, Vakhrushev IV, Yarygin KN et al (2008) Development and introduction of production standards for cell products of mesenchymal origin. Bull Exp Biol Med 145(4):526–530PubMedCrossRefGoogle Scholar
  72. 72.
    Veyrat-Masson R, Boiret-Dupre N, Rapatel C, Descamps S, Guillouard L, Guerin JJ et al (2007) Mesenchymal content of fresh bone marrow: a proposed quality control method for cell therapy. Br J Haematol 139(2):312–320PubMedCrossRefGoogle Scholar
  73. 73.
    Grisendi G, Anneren C, Cafarelli L, Sternieri R, Veronesi E, Cervo GL et al (2010) GMP-manufactured density gradient media for optimized mesenchymal stromal/stem cell isolation and expansion. Cytotherapy 12(4):466–477PubMedCrossRefGoogle Scholar
  74. 74.
    Crisostomo PR, Wang MJ, Wairiuko GM, Morrell ED, Terrell AM, Seshadri P et al (2006) High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 26(6):575–580PubMedCrossRefGoogle Scholar
  75. 75.
    Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 10:7Google Scholar
  76. 76.
    Pochampally RR, Smith JR, Ylostalo J, Prockop DJ (2004) Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 103(5):1647–1652PubMedCrossRefGoogle Scholar
  77. 77.
    Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S, Impola U et al (2007) N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25(1):197–202PubMedCrossRefGoogle Scholar
  78. 78.
    Sundin M, Ringden O, Sundberg B, Nava S, Gotherstrom C, Le Blanc K (2007) No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica 92(9):1208–1215PubMedCrossRefGoogle Scholar
  79. 79.
    WHO Expert Committee on Biological Standardization (2010) Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks. Report No.: WHO/BS/10.2132Google Scholar
  80. 80.
    Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 32(12):1212–1225PubMedCrossRefGoogle Scholar
  81. 81.
    Muller I, Kordowich S, Holzwarth C, Spano C, Isensee G, Staiber A et al (2006) Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 8(5):437–444PubMedCrossRefGoogle Scholar
  82. 82.
    Le Blanc K, Samuelsson H, Lonnies L, Sundin M, Ringden O (2007) Generation of immunosuppressive mesenchymal stem cells in allogeneic human serum. Transplantation 84(8):1055–1059PubMedCrossRefGoogle Scholar
  83. 83.
    von Bonin M, Stolzel F, Goedecke A, Richter K, Wuschek N, Holig K et al (2009) Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant 43(3):245–251CrossRefGoogle Scholar
  84. 84.
    Horn P, Bokermann G, Cholewa D, Bork S, Walenda T, Koch C et al (2010) Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 12(7):888–898PubMedCrossRefGoogle Scholar
  85. 85.
    Meuleman N, Tondreau T, Bron D, Lagneaux L (2007) Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-minimal essential medium (MEM). Eur J Haematol 78(2):168CrossRefGoogle Scholar
  86. 86.
    Chase L, Lakshmipathy U, Solchaga L, Rao M, Verfaillie CM (2010) A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther 1(8):1–8Google Scholar
  87. 87.
    Chase L, Boucher S, Vemuri M (2010) Serum-free and xeno-free culture medium for the expansion of human mesenchymal stem cells. Hum Gene Ther 21(6):785–786Google Scholar
  88. 88.
    Lindroos B, Boucher S, Chase L, Kuokkanen H, Huhtala H, Haataja R et al (2009) ­Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy 11(7):958–972PubMedCrossRefGoogle Scholar
  89. 89.
    Shepherd AJ, Wilson NJ, Smith KT (2003) Characterisation of endogenous retrovirus in rodent cell lines used for production of biologicals. Biologicals 31(4):251–260PubMedCrossRefGoogle Scholar
  90. 90.
    Wolfe M, Pochampally R, Swaney W, Reger R (2008) Isolation and culture of bone marrow-derived human multipotent stromal cells (hMSCs). Methods Mol Biol 449:3–25PubMedGoogle Scholar
  91. 91.
    Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20(6):530–541PubMedCrossRefGoogle Scholar
  92. 92.
    LeBlanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586CrossRefGoogle Scholar
  93. 93.
    Yang HS, Jeon O, Bhang SH, Lee SH, Kim BS (2010) Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment. Cell Transplant 19:1123–1132PubMedCrossRefGoogle Scholar
  94. 94.
    Eibes G, dos Santos F, Andrade PZ, Boura JS, Abecasis MMA, da Silva CL et al (2010) Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. J Biotechnol 146(4):194–197PubMedCrossRefGoogle Scholar
  95. 95.
    Frauenschuh S, Reichmann E, Ibold Y, Goetz PM, Sittinger M, Ringe J (2007) A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Biotechnol Prog 23(1):187–193PubMedCrossRefGoogle Scholar
  96. 96.
    Schop D, Janssen FW, Borgart E, de Bruijn JD, Dijkhuizen-Radersma R (2008) Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: growth and metabolism. J Tissue Eng Regen Med 2(2–3):126–135PubMedCrossRefGoogle Scholar
  97. 97.
    Liu Y, Xu X, Ma X, Martin-Rendon E, Watt S, Cui Z (2010) Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethylsulfoxide and well-defined freezing solutions. Biotechnol Prog 26:1635–1643PubMedCrossRefGoogle Scholar
  98. 98.
    Center for Biologics Evaluation and Research (2004) Guidance for industry – sterile drug products produced by aseptic processing – current good manufacturing practice. p 1–59 U.S. Department of Health and Human Services Food and Drug Administration Center for Biologies Evaluation and Research Rockville, MDGoogle Scholar
  99. 99.
    FDA (2008) Guidance for industry – process validation: general principals and practices (draft guidance) U.S. Department of Health and Human Services Food and Drug Administration Center for Biologies Evaluation and Research Rockville, MDGoogle Scholar
  100. 100.
    Butler JM (2006) Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci 51(2):253–265PubMedCrossRefGoogle Scholar
  101. 101.
    Bentley G, Higuchi R, Hoglund B, Goodridge D, Sayer D, Trachtenberg EA et al (2009) High-resolution, high-throughput HLA genotyping by next-generation sequencing. Tissue Antigens 74(5):393–403PubMedCrossRefGoogle Scholar
  102. 102.
    Schmid I, Krall WJ, Uittenbogaart CH, Braun J, Giorgi JV (1992) Dead cell discrimination with 7-amino-actinomycin-D in combination with dual color immunofluorescence in single laser flow-cytometry. Cytometry 13(2):204–208PubMedCrossRefGoogle Scholar
  103. 103.
    FDA (1993) Points to consider in the characterization of cell lines used to produce biologics U.S. Department of Health and Human Services Food and Drug Administration Center for Biologies Evaluation and Research Rockville, MDGoogle Scholar
  104. 104.
    Catalina P, Cobo F, Cortes JL, Nieto AI, Cabrera C, Montes R et al (2007) Conventional and molecular cytogenetic diagnostic methods in stem cell research: a concise review. Cell Biol Int 31(9):861–869PubMedCrossRefGoogle Scholar
  105. 105.
    Sumstad D, Carlson M, Adams S, Kadidlo D, Bostrom N, Wagner J et al (2009) Reduction of non-clinical-/non-cGMP-grade culture reagents and measurement of residual ingredients in final early phase cellular therapy products. Presented at the International Society for Cellular Therapy 2009 Annual Meeting, San Diego, CAGoogle Scholar
  106. 106.
    FDA (2008) Guidance for industry: potency tests for cellular and gene therapy products (draft guidance) U.S. Department of Health and Human Services Food and Drug Administration Center for Biologies Evaluation and Research Rockville, MDGoogle Scholar
  107. 107.
    Le Blanc K, Rasmusson I, Gotherstrom C, Seidel C, Sundberg B, Sundin M et al (2004) Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 60(3):307–315PubMedCrossRefGoogle Scholar
  108. 108.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843PubMedCrossRefGoogle Scholar
  109. 109.
    Matthay MA, Thompson BT, Read EJ, McKenna DH, Liu KD, Calfee CS et al (2010) Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 138(4):965–972PubMedCrossRefGoogle Scholar
  110. 110.
    Bernardo ME, Avanzini MA, Ciccocioppo R, Perotti C, Cometa AM, Moretta A et al (2008) Phenotypical and functional characterization of in vitro expanded bone marrow-derived mesenchymal stromal cells from patients with Crohn’s disease. Blood 112(11):888Google Scholar
  111. 111.
    De Bari C, Dell’Accio F, Karystinou A, Guillot PV, Fisk NM, Jones EA et al (2008) A biomarker-based mathematical model to predict bone-forming potency of human synovial and periosteal mesenchymal stem cells. Arthritis Rheum 58(1):240–250PubMedCrossRefGoogle Scholar
  112. 112.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  113. 113.
    Wagner W, Wein F, Roderburg C, Saffrich R, Diehlmann A, Eckstein V et al (2008) Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44. Cells Tissues Organs 188(1–2):160–169PubMedCrossRefGoogle Scholar
  114. 114.
    Kadereit S, Deeds LS, Haynesworth SE, Koc ON, Kozik MM, Szekely E et al (2002) Expansion of LSTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34(+)/CD38(−) early progenitors cultured over human MSCs as a feeder layer. Stem Cells 20(6):573–582PubMedCrossRefGoogle Scholar
  115. 115.
    Hatzistergos KE, Quevedo H, Oskouei BN, Hu QH, Feigenbaum GS, Margitich IS et al (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107(7):913PubMedCrossRefGoogle Scholar
  116. 116.
    Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noel D (2010) Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 1(2):1–7Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Waisman Biomanufacturing, Waisman CenterUniversity of WisconsinMadisonUSA
  2. 2.Molecular and Cellular TherapeuticsUniversity of Minnesota Medical CenterMinneapolisUSA

Personalised recommendations