Advertisement

Human MSCs from Bone Marrow, Umbilical Cord Blood, and Adipose Tissue: All the Same?

  • Patrick Wuchter
  • Anthony D. Ho
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

In addition to bone marrow (BM), umbilical cord blood (UCB) and adipose tissue (AT) represent promising starting materials for the isolation and expansion of mesenchymal stromal/stem cells (MSCs). MSC preparations from these different sources are associated with distinct features and advantages: Whereas MSCs derived from UCB show the best expansion potential, the highest yield of MSC can be recovered from AT. MSCs from these starting materials have been analyzed and characterized in numerous studies. Clinical trials have been activated to define their roles in a variety of disorders. However, no specific cellular markers or marker constellation for MSCs have yet been identified. MSC preparations derived from various protocols are highly heterogeneous and differ widely in their functional properties. It is therefore essential to develop universal criteria for the quality control of starting cell populations as well as for the cell products after expansion. For clinical use, it is also advisable to use well-defined and, preferably, serum-free culture media under current good manufacturing practice conditions.

Keywords

Mesenchymal Stem Cell Umbilical Cord Blood Multipotent Mesenchymal Stromal Cell Multipotent Adult Progenitor Cell Unrestricted Somatic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF) within the supporting program “cell-based regenerative medicine” (START-MSC2) and the German Research Foundation DFG (SFB 873). We thank Anke Diehlmann for excellent technical assistance in cell culture and Dr. Rainer Saffrich for outstanding image acquisition.

References

  1. 1.
    Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390PubMedGoogle Scholar
  2. 2.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247PubMedCrossRefGoogle Scholar
  3. 3.
    Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340PubMedCrossRefGoogle Scholar
  4. 4.
    Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650PubMedCrossRefGoogle Scholar
  5. 5.
    Baptista LS, do Amaral RJ, Carias RB, Aniceto M, Claudio-da-Silva C, Borojevic R (2009) An alternative method for the isolation of mesenchymal stromal cells derived from lipoaspirate samples. Cytotherapy 11(6):706–715PubMedCrossRefGoogle Scholar
  6. 6.
    Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K et al (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14(4–6):311–324PubMedCrossRefGoogle Scholar
  7. 7.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedCrossRefGoogle Scholar
  8. 8.
    Bieback K, Kern S, Klüter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634PubMedCrossRefGoogle Scholar
  9. 9.
    Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–1140PubMedCrossRefGoogle Scholar
  10. 10.
    Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA et al (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2(6):477–488PubMedCrossRefGoogle Scholar
  11. 11.
    Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent ­progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904PubMedCrossRefGoogle Scholar
  12. 12.
    da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213PubMedCrossRefGoogle Scholar
  13. 13.
    Anker PS i’t, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL et al (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88:845–852Google Scholar
  14. 14.
    Hwang NS, Varghese S, Lee HJ, Zhang Z, Ye Z, Bae J et al (2008) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci USA 105(52):20641–20646PubMedCrossRefGoogle Scholar
  15. 15.
    Prockop DJ (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 17(6):939–946PubMedCrossRefGoogle Scholar
  16. 16.
    Ho AD, Wagner W, Franke WW (2008) Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 10:320–330PubMedCrossRefGoogle Scholar
  17. 17.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  18. 18.
    Horwitz EM, Keating A (2000) Nonhematopoietic mesenchymal stem cells: what are they? Cytotherapy 2:387–388PubMedCrossRefGoogle Scholar
  19. 19.
    Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC et al (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395PubMedCrossRefGoogle Scholar
  20. 20.
    Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416PubMedCrossRefGoogle Scholar
  21. 21.
    Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301PubMedCrossRefGoogle Scholar
  22. 22.
    Wagner W, Roderburg C, Wein F, Diehlmann A, Frankhauser M, Schubert R et al (2007) Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells 10:2638–2647CrossRefGoogle Scholar
  23. 23.
    Wagner W, Ho AD (2007) Mesenchymal stem cell preparations – comparing apples and oranges. Stem Cell Rev 3:239–248PubMedCrossRefGoogle Scholar
  24. 24.
    Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22:675–682PubMedCrossRefGoogle Scholar
  25. 25.
    Mueller SM, Glowacki J (2001) Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 82:583–590PubMedCrossRefGoogle Scholar
  26. 26.
    Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926PubMedCrossRefGoogle Scholar
  27. 27.
    Bieback K, Kern S, Kocaömer A, Ferlik K, Bugert P (2008) Comparing mesenchymal stromal cells from different human tissues: bone marrow, adipose tissue and umbilical cord blood. Biomed Mater Eng 18(1 Suppl):S71–S76PubMedGoogle Scholar
  28. 28.
    Horn P, Bork S, Diehlmann A, Walenda T, Eckstein V, Ho AD et al (2008) Isolation of human mesenchymal stromal cells is more efficient by red blood cell lysis. Cytotherapy 10(7):676–685PubMedCrossRefGoogle Scholar
  29. 29.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  30. 30.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74PubMedCrossRefGoogle Scholar
  31. 31.
    Gronthos S, Graves SE, Ohta S, Simmons PJ (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84(12):4164–4173PubMedGoogle Scholar
  32. 32.
    Gronthos S, Simmons PJ (1995) The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 85(4):929–940PubMedGoogle Scholar
  33. 33.
    Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62PubMedGoogle Scholar
  34. 34.
    Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30:783–791PubMedCrossRefGoogle Scholar
  35. 35.
    Sabatini F, Petecchia L, Tavian M, Jodon de Villeroché V, Rossi GA et al (2005) Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest 85:962–971PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedCrossRefGoogle Scholar
  37. 37.
    Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625PubMedCrossRefGoogle Scholar
  38. 38.
    Bühring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271PubMedCrossRefGoogle Scholar
  39. 39.
    Wagner W, Feldmann RE Jr, Seckinger A, Maurer MH, Wein F, Blake J, Krause U et al (2006) The heterogeneity of human mesenchymal stem cell preparations – evidence from simultaneous analysis of proteomes and transcriptomes. Exp Hematol 34:536–548PubMedCrossRefGoogle Scholar
  40. 40.
    Hou L, Cao H, Wang D, Wei G, Bai C, Zhang Y et al (2003) Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro. Int J Hematol 78:256–261PubMedCrossRefGoogle Scholar
  41. 41.
    Bieback K, Hecker A, Kocaömer A, Lannert H, Schallmoser K, Strunk D et al (2009) Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 27(9):2331–2341PubMedCrossRefGoogle Scholar
  42. 42.
    Hatlapatka T, Moretti P, Lavrentieva A, Hass R, Marquardt N, Jacobs R et al (2011) Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions. Tissue Eng Part C Methods 17(4):485–493PubMedCrossRefGoogle Scholar
  43. 43.
    Kocaoemer A, Kern S, Klüter H, Bieback K (2007) Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25:1270–1278PubMedCrossRefGoogle Scholar
  44. 44.
    Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213(1):18–26PubMedCrossRefGoogle Scholar
  45. 45.
    Müller I, Kordowich S, Holzwarth C, Spano C, Isensee G, Staiber A et al (2006) Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy 8:437–444PubMedCrossRefGoogle Scholar
  46. 46.
    Schallmoser K, Bartmann C, Rohde E, Reinisch A, Kashofer K, Stadelmeyer E et al (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47(8):1436–1446PubMedCrossRefGoogle Scholar
  47. 47.
    Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 32:1212–1225PubMedCrossRefGoogle Scholar
  48. 48.
    Horn P, Bokermann G, Cholewa D, Bork S, Walenda T, Koch C et al (2010) Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 12(7):888–898PubMedCrossRefGoogle Scholar
  49. 49.
    Sensebé L, Bourin P, Tarte K (2011) Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Ther 22(1):19–26PubMedCrossRefGoogle Scholar
  50. 50.
    Ren H, Cao Y, Zhao Q, Li J, Zhou C, Liao L et al (2006) Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem Biophys Res Commun 347:12–21PubMedCrossRefGoogle Scholar
  51. 51.
    Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98:7841–7845PubMedCrossRefGoogle Scholar
  52. 52.
    Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2005) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471PubMedCrossRefGoogle Scholar
  53. 53.
    Kotobuki N, Hirose M, Machida H, Katou Y, Muraki K, Takakura Y et al (2005) Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng 11:663–673PubMedCrossRefGoogle Scholar
  54. 54.
    Wang H, Scott RE (1993) Inhibition of distinct steps in the adipocyte differentiation pathway in 3T3 T mesenchymal stem cells by dimethyl sulphoxide (DMSO). Cell Prolif 26:55–66PubMedCrossRefGoogle Scholar
  55. 55.
    Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 22:863–866PubMedCrossRefGoogle Scholar
  56. 56.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRefGoogle Scholar
  57. 57.
    Lindner U, Kramer J, Behrends J, Driller B, Wendler NO, Boehrnsen F et al (2010) Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured with basement-membrane extracellular matrix proteins. Cytotherapy 12(8):992–1005PubMedCrossRefGoogle Scholar
  58. 58.
    Sawyer AA, Hennessy KM, Bellis SL (2005) Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins. Biomaterials 26(13):1467–1475PubMedCrossRefGoogle Scholar
  59. 59.
    Uygun BE, Stojsih SE, Matthew HW (2009) Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. Tissue Eng Part A 15(11):3499–3512PubMedCrossRefGoogle Scholar
  60. 60.
    Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD et al (2009) DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9(1):54–63PubMedCrossRefGoogle Scholar
  61. 61.
    Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281PubMedCrossRefGoogle Scholar
  62. 62.
    Fehrer C, Laschober G, Lepperdinger G (2006) Aging of murine mesenchymal stem cells. Ann N Y Acad Sci 1067:235–242PubMedCrossRefGoogle Scholar
  63. 63.
    Javazon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32:414–425PubMedCrossRefGoogle Scholar
  64. 64.
    Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC et al (2010) Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 95(6):867–874PubMedCrossRefGoogle Scholar
  65. 65.
    Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R et al (2008) Replicative senescence of mesenchymal stem cells – a continuous and organized process. PLoS One 5:e2213CrossRefGoogle Scholar
  66. 66.
    Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A et al (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 4:e5846PubMedCrossRefGoogle Scholar
  67. 67.
    Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U et al (2007) Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Res 328:499–514PubMedCrossRefGoogle Scholar
  68. 68.
    Franke WW, Grund C, Jackson BW, Illmensee K (1983) Formation of cytoskeletal elements during mouse embryogenesis. IV. Ultrastructure of primary mesenchymal cells and their cell-cell interactions. Differentiation 25:121–141PubMedCrossRefGoogle Scholar
  69. 69.
    Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M et al (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22:1263–1278PubMedCrossRefGoogle Scholar
  70. 70.
    Feldmann RE Jr, Bieback K, Maurer MH, Kalenka A, Bürgers HF, Gross B et al (2005) Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood. Electrophoresis 26(14):2749–2758PubMedCrossRefGoogle Scholar
  71. 71.
    Ogawara M, Inagaki N, Tsujimura K, Takai Y, Sekimata M, Ha MH et al (1995) Differential targeting of protein kinase C and CaM kinase II signalings to vimentin. J Cell Biol 131(4):1055–1066PubMedCrossRefGoogle Scholar
  72. 72.
    Takai Y, Ogawara M, Tomono Y, Moritoh C, Imajoh-Ohmi S, Tsutsumi O et al (1996) Mitosis-specific phosphorylation of vimentin by protein kinase C coupled with reorganization of intracellular membranes. J Cell Biol 133(1):141–149PubMedCrossRefGoogle Scholar
  73. 73.
    Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834PubMedCrossRefGoogle Scholar
  74. 74.
    Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242PubMedCrossRefGoogle Scholar
  75. 75.
    Broxmeyer HE (2010) Umbilical cord transplantation: epilogue. Semin Hematol 47(1):97–103PubMedCrossRefGoogle Scholar
  76. 76.
    Kurtzberg J (2009) Update on umbilical cord blood transplantation. Curr Opin Pediatr 21(1):22–29PubMedCrossRefGoogle Scholar
  77. 77.
    Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7:581–588PubMedCrossRefGoogle Scholar
  78. 78.
    Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135PubMedCrossRefGoogle Scholar
  79. 79.
    Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675PubMedCrossRefGoogle Scholar
  80. 80.
    Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC, Hwang SM (2006) Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells 24(3):679–685PubMedCrossRefGoogle Scholar
  81. 81.
    Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3(6):379–389PubMedCrossRefGoogle Scholar
  82. 82.
    Jeltsch KS, Radke TF, Laufs S, Giordano FA, Allgayer H, Wenz F et al (2011) Unrestricted somatic stem cells: interaction with CD34(+) cells in vitro and in vivo, expression of homing genes and exclusion of tumorigenic potential. Cytotherapy 13(3):357–365PubMedCrossRefGoogle Scholar
  83. 83.
    Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MD et al (2008) Mesenchymal stem cells from umbilical cord: do not discard the cord! Neuromuscul Disord 18(1):17–18PubMedCrossRefGoogle Scholar
  84. 84.
    Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MD et al (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26(1):146–150PubMedCrossRefGoogle Scholar
  85. 85.
    Zeddou M, Briquet A, Relic B, Josse C, Malaise MG, Gothot A et al (2010) The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood. Cell Biol Int 34(7):693–701PubMedCrossRefGoogle Scholar
  86. 86.
    de Girolamo L, Sartori MF, Albisetti W, Brini AT (2007) Osteogenic differentiation of human adipose-derived stem cells: comparison of two different inductive media. J Tissue Eng Regen Med 1(2):154–157PubMedCrossRefGoogle Scholar
  87. 87.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295PubMedCrossRefGoogle Scholar
  88. 88.
    Corre J, Barreau C, Cousin B, Chavoin JP, Caton D, Fournial G et al (2006) Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J Cell Physiol 208(2):282–288PubMedCrossRefGoogle Scholar
  89. 89.
    LeBlanc K, Götherström C, Ringden O, Hassan M, MacMahon R, Horwitz E et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79(11):1607–1614CrossRefGoogle Scholar
  90. 90.
    Bieback K, Wuchter P, Besser D, Franke WW, Becker M, Ott M et al (2012) Mesenchymal stromal cells (MSCs): science and f(r)iction. J Mol Med 90(7):773–782PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MedicineHeidelberg UniversityHeidelbergGermany

Personalised recommendations