Materials and Devices for MEMS Piezoelectric Energy Harvesting



Piezoelectric vibration energy harvesters (PVEHs) for microelectromechanical systems (MEMS) have received considerable attention as an enabling technology for self-powered wireless sensor networks. MEMS-PVEHs are particularly attractive because of the potential to deliver power required for sensor nodes and their ability to be integrated concurrently with the microfabrication of electronic circuits such as sensor nodes. This chapter consists of four subsections, starting with Sect. 17.1, where various piezoelectric materials commonly used for MEMS-scale PVEHs are reviewed. Typical device configurations of PVEH systems are introduced in Sect. 17.2, followed by analytical modeling of different configurations in Sect. 17.3 to link material characteristics to device performance: standard capacitor type electrodes for {3–1} mode of operation and interdigitated electrodes (IDTEs) for {3–3} mode of operation. In the last section, fabrication and characterization of MEMS-scale PVEHs in both of these modes are presented with model–experiment comparisons.


  1. 1.
    Muralt P (2000) Ferroelectric thin films for micro-sensor and actuators: a review. J Micromech Microeng 10:136–146CrossRefGoogle Scholar
  2. 2.
    Trolier-Mckinstry S, Muralt P (2004) Thin film piezoelectric for MEMS. J Electroceram 12:7–17CrossRefGoogle Scholar
  3. 3.
    IEEE 1987 ANSI Standard 176–1987: IEEE Standard on PiezoelectricityGoogle Scholar
  4. 4.
    Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001CrossRefGoogle Scholar
  5. 5.
    Tadigadapa S, Mateti K (2004) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20:092001CrossRefGoogle Scholar
  6. 6.
    Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21CrossRefGoogle Scholar
  7. 7.
    Funasaka T, Furuhata M, Hashimoto Y, Nakamura K (1998) Piezoelectric generator using a LiNbO3 plate with an inverted domain. Ultrasonics symposium, Sendai, pp 959–962Google Scholar
  8. 8.
    Setter N et al (2006) Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys 100:051606CrossRefGoogle Scholar
  9. 9.
    Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242CrossRefGoogle Scholar
  10. 10.
    Xu C, Wang S, Wang ZL (2009) Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc 131:5866–5872CrossRefGoogle Scholar
  11. 11.
    Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115–1121CrossRefGoogle Scholar
  12. 12.
    Priya S (2007) Advanced in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:165–182Google Scholar
  13. 13.
    Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–205CrossRefGoogle Scholar
  14. 14.
    Sodano HA, Park G, Inman DJ (2004) An investigation into the performance of macro-fiber composites for sensing and structural vibration applications. Mech Syst Signal Process 18: 683–697CrossRefGoogle Scholar
  15. 15.
    Sodano HA, Park G, Leo DJ, Inman DJ (2004) Model of piezoelectric power harvesting beam. In: ASME international mechanical engineering congress and exposition, Washington, DC, 15–21 November, vol 40, p 2Google Scholar
  16. 16.
    Kim H et al (2009) Piezoelectric energy harvesting, chapter 1. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer Science & Business Media, LLC, New York, NYGoogle Scholar
  17. 17.
    Ikeda T (1996) Fundamental of piezoelectricity. Oxford University Press, New YorkGoogle Scholar
  18. 18.
    Schwartz RW, Ballato J, Haertling GH (2004) Piezoelectric and electro-optic ceramics. In: Buchanan RC (ed) Ceramics materials for electronics. Dekker, New YorkGoogle Scholar
  19. 19.
    Xu Y (1991) Ferroelectric materials and their applications. North-Holland, AmsterdamGoogle Scholar
  20. 20.
    Gady WG (1946) Piezoelectricity. McGraw-Hill, New YorkGoogle Scholar
  21. 21.
    Setter N (2005) Electroceramics-based MEMS: fabrication-technology, and applications. In: Tuller HL (ed) Electronics materials: science and technology. Springer, New YorkGoogle Scholar
  22. 22.
    Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 13:R175–R195CrossRefGoogle Scholar
  23. 23.
    Kim M, Hoegen M, Dugundji J, Wardle BL (2010) Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Mater Struct 19:045023CrossRefGoogle Scholar
  24. 24.
    Jeon YB, Sood R, Jeong J-H, Kim S-G (2005) MEMS power generator with transverse mode thin film PZT. Sens Actuators A 122:16–22CrossRefGoogle Scholar
  25. 25.
    Shen D, Park J-H, Ajitsaria J, Choe S-Y, Howard CW III, Kim D-J (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18:055017CrossRefGoogle Scholar
  26. 26.
    du Toit NE (2005) Modeling and design of a MEMS piezoelectric vibration energy harvester. Master’s thesis, Massachusetts Institute of TechnologyGoogle Scholar
  27. 27.
    Mo C, Kim S, Clark WW (2009) Theoretical analysis of energy harvesting performance for unimorph piezoelectric benders with interdigitated electrodes. Smart Mater Struct 18:055017CrossRefGoogle Scholar
  28. 28.
    duToit NE, Wardle BL (2007) Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J 45:1126–1137CrossRefGoogle Scholar
  29. 29.
    Myers R, Vickers M, Kim H, Priya S (2007) Small scale windmill. Appl Phys Lett 90:3CrossRefGoogle Scholar
  30. 30.
    Fang HB, Liu JQ, Xu ZY, Dong L, Wang L, Chen D, Cai BC, Liu Y (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:1280–1284CrossRefGoogle Scholar
  31. 31.
    Marzencki M, Charlot B, Basrour S, Colin M, Valbin L (2005) Design and fabrication of piezoelectric micro power generators for autonomous microsystems. DTIP’ 05 symposium design, test, integration & packaging of MEMS/MOEMS, Montreux, Switzerland, pp 299–302Google Scholar
  32. 32.
    Ajitsaria J, Cho S-Y, Shen D, Kim DJ (2007) Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater Struct 16:447–454CrossRefGoogle Scholar
  33. 33.
    Shena D, Park J-H, Noh JH, Choe S-Y, Kim S-H, Wikle HC III, Kim D-J (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens Actuators A 154:103–108CrossRefGoogle Scholar
  34. 34.
    Muralt P, Polcawich RG, Trolier-McKinstry S (2009) Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull 34:658–664CrossRefGoogle Scholar
  35. 35.
    Ledermann N, Muralt P, Baborowski J, Gentil S, Mukati K, Cantoni M, Seifert A, Setter N (2003) {100}-Textured, piezoelectric Pb(Zrx, Ti1-x)O3 thin films for MEMS: integration, deposition and properties. Sens Actuators A 105:162–170CrossRefGoogle Scholar
  36. 36.
    Lefki K, Dormans M (1994) Measurement of piezoelectric coefficients of ferroelectric thin films. J Appl Phys 76(3):1CrossRefGoogle Scholar
  37. 37.
    Liu D, Yoon SH, Zhou B, Prorok BC, Kim DJ (2009) Investigation of the crystalline orientations and substrates dependence on mechanical properties of PZT thin films by nanoindentation. Materials research society symposium proceeding, vol 1129Google Scholar
  38. 38.
    Mracek AM (2004) Towards an embeddable structural health monitoring sensor: design and optimization of MEMS piezoelectric vibration energy harvesters. Master’s thesis, Massachusetts Institute of TechnologyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Materials and ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Division of Industrial Metrology, Center for Safety MeasurementKorea Research Institute of Standards and ScienceDaejeonRepublic of Korea
  3. 3.School of EngineeringBrown UniversityProvidenceUSA
  4. 4.Materials Science Division and Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA

Personalised recommendations