Advertisement

Hybrid Optical Confinement Geometry Device

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Apart from the more distributional solid state photovoltaic devices, including silicon III-V, polymer, CIGS and CZTS, another type of solar cell based on solutions such as dye-sensitized solar cells has attracted many groups in the past 10 years, and also proved to perform at levels higher than 10% [1]. Some optical confinement geometries with tubes or other cavities connecting with fibers could work well by combining solid-based cells and solution-based materials together, which is known as a hybrid optical confinement geometry solar cell. Furthermore, by means of the feature of applicability working at very high light intensity, a fiber based hybrid solar power system combining photovoltaic and thermoelectricity is designed to reach a very high efficiency over 50%. Yet, this technology is able to be applied to most of photovoltaic materials.

Keywords

Solar Cell Power Conversion Efficiency Organic Photovoltaic Thermal Energy Dissipation Incident Light Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37). Prog. Photovoltaics 19, 84–92 (2011)CrossRefGoogle Scholar
  2. 2.
    H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E.D. Peterson, J. Liu, G. Fang, D.L. Carroll, Photovoltaic-thermal solar energy collectors based on optical tubes. Sol. Energ. 85, 450–454 (2011)Google Scholar
  3. 3.
    H.P. Garg, R.K. Agarwal, J.C. Joshi, Experimental-study on a hybrid photovoltaic thermal solar water-heater and its performance predictions. Energ, Convers. Manage. 35, 621–633 (1994)CrossRefGoogle Scholar
  4. 4.
    P.A. Davies, A. Luque, Solar thermophotovoltaics: brief review and a new look. Sol. Energ. Mat. Sol. C. 33, 11–22 (1994)CrossRefGoogle Scholar
  5. 5.
    P.G. Charalambous, G.G. Maidment, S.A. Kalogirou, K. Yiakoumetti, Photovoltaic thermal (PV/T) collectors: A review. Appl. Therm. Eng. 27, 275–286 (2007)CrossRefGoogle Scholar
  6. 6.
    T.T. Chow, A review on photovoltaic/thermal hybrid solar technology. Appl. Energ. 87, 365–379 (2010)CrossRefGoogle Scholar
  7. 7.
    S. Kumar, A. Tiwari, An experimental study of hybrid photovoltaic thermal (PV/T)-active solar still. Int. J. Energ. Res. 32, 847–858 (2008)CrossRefGoogle Scholar
  8. 8.
    B. Singh, M.Y. Othman, A review on photovoltaic thermal collectors. J. Renew. Sust. Energ. 1, 062702 (2009)CrossRefGoogle Scholar
  9. 9.
    J.W. Liu, M.A.G. Namboothiry, D.L. Carroll, Optical geometries for fiber-based organic photovoltaics. Appl. Phys. Lett. 90, 133515 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Li, E.D. Peterson, H.H. Huang, M.J. Wang, D. Xue, W.Y. Nie, W. Zhou, D.L. Carroll, Tube-based geometries for organic photovoltaics. Appl. Phys. Lett. 96, 243505 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Li, W. Nie, J. Liu, A. Partridge, D.L. Carroll, The optics of organic photovoltaics: Fiber-based devices. IEEE J. Sel. Top. Quant. Electron. 16(6), 1–11 (2010)Google Scholar
  12. 12.
    N.S. Lewis, Toward cost-effective solar energy use. Science 315, 798–801 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    F.C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energ. Mat. Sol. C. 93, 394–412 (2009)CrossRefGoogle Scholar
  14. 14.
    F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442–5451 (2009)CrossRefGoogle Scholar
  15. 15.
    F.C. Krebs, T.D. Nielsen, J. Fyenbo, M. Wadstrom, M.S. Pedersen, Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative. Energ. Environ. Sci. 3, 512–525 (2010)CrossRefGoogle Scholar
  16. 16.
    F.C. Krebs, T. Tromholt, M. Jorgensen, Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2, 873–886 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    K. Kim, J. Liu, M.A.G. Namboothiry, D.L. Carroll, Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 90, 163511 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Li, W. Zhou, D. Xue, J.W. Liu, E.D. Peterson, W.Y. Nie, D.L. Carroll, Origins of performance in fiber-based organic photovoltaics. Appl. Phys. Lett. 95, 203503 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    L.A.A. Pettersson, L.S. Roman, O. Inganas, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    D.W. Sievers, V. Shrotriya, Y. Yang, Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J. Appl. Phys. 100, 114509 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Open Photovoltaics Analysis Platform (OPVAP) by Yuan Li, USA www.OPVAP.com
  22. 22.
    M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells. Sol. Energ. Mat. Sol. C. 92, 686–714 (2008)CrossRefGoogle Scholar
  23. 23.
    H.Y. Chen, J.H. Hou, S.Q. Zhang, Y.Y. Liang, G.W. Yang, Y. Yang, L.P. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649–653 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    R.C. Coffin, J. Peet, J. Rogers, G.C. Bazan, Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat. Chem. 1, 657–661 (2009)CrossRefGoogle Scholar
  25. 25.
    X. Gong, M.H. Tong, Y.J. Xia, W.Z. Cai, J.S. Moon, Y. Cao, G. Yu, C.L. Shieh, B. Nilsson, A.J. Heeger, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665–1667 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    L.J. Huo, J.H. Hou, H.Y. Chen, S.Q. Zhang, Y. Jiang, T.L. Chen, Y. Yang, Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules 42, 6564–6571 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297–U295 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, T. Bessho, H. Imai, Characteristics of high efficiency dye-sensitized solar cells. J. Phys. Chem. B 110, 25210–25221 (2006)CrossRefGoogle Scholar
  29. 29.
    K. Uzaki, T. Nishimura, J. Usagawa, S. Hayase, M. Kono, Y. Yamaguchi, Dye-sensitized solar cells consisting of 3D-electrodes—a review: Aiming at high efficiency from the view point of light harvesting and charge collection. J, Sol. Energ. Eng. 132, 021204 (2010)CrossRefGoogle Scholar
  30. 30.
    K. Uzaki, S.S. Pandey, Y. Ogimi, S. Hayase, Tandem dye-sensitized solar cells consisting of nanoporous titania sheet. Jpn. J. Appl. Phys. 49, 082301 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    S. Ito, S.M. Zakeeruddin, P. Comte, P. Liska, D. Kuang, M. Grätzel, Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nat. Photonics 2, 693–698 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Wang, Y. Liu, H. Yang, H. Wang, H. Shen, M. Li, J. Yan, An investigation of DNA-like structured dye-sensitized solar cells. Curr. Appl. Phys. 10, 119–123 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Wang, H. Yang, L. Lu, Three-dimensional double deck meshlike dye-sensitized solar cells. J. Appl. Phys. 108, 064510 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    J. Usagawa, S.S. Pandey, S. Hayase, M. Kono, Y. Yamaguchi, Tandem dye-sensitized solar cells fabricated on glass rod without transparent conductive layers. Appl. Phys. Express 2, 062203 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Z. Tachan, S. Rühle, A. Zaban, Dye-sensitized solar tubes: A new solar cell design for efficient current collection and improved cell sealing. Sol. Energ. Mat. Sol. C. 94, 317–322 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Toivola, M. Ferenets, P. Lund, A. Harlin, Photovoltaic fiber. Thin Solid Films 517, 2799–2802 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    J.W. Liu, M.A.G. Namboothiry, D.L. Carroll, Fiber-based architectures for organic photovoltaics. Appl. Phys. Lett. 90, 063501 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Li, W. Zhou, D. Xue, J. Liu, E.D. Peterson, W. Nie, D.L. Carroll, Origins of performance in fiber-based organic photovoltaics. Appl. Phys. Lett. 95, 203503 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Li, E.D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, D.L. Carroll, Tube-based geometries for organic photovoltaics. Appl. Phys. Lett. 96, 243505 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Liu, X. Sun, Q. Tai, H. Hu, B. Chen, N. Huang, B. Sebo, X.Z. Zhao, Efficiency enhancement in dye-sensitized solar cells by interfacial modification of conducting glass/mesoporous TiO2 using a novel ZnO compact blocking film. J. Power. Sources 196, 475–481 (2011)CrossRefGoogle Scholar
  41. 41.
    X. Fan, Z.Z. Chu, F.Z. Wang, C. Zhang, L. Chen, Y.W. Tang, D.C. Zou, Wire-shaped flexible dye-sensitized solar cells. Adv. Mater. 20, 592–595 (2008)CrossRefGoogle Scholar
  42. 42.
    S.R. Cowan, A. Roy, A.J. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B. 82, 245207 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Li, M. Wang, H. Huang, W. Nie, Q. Li, E.D. Peterson, R. Coffin, G. Fang, D.L. Carroll, Influence on open-circuit voltage by optical heterogeneity in three-dimensional organic photovoltaics. Phys. Rev. B. 84, 085206 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    F. Liu, J.M. Nunzi, Air stable hybrid inverted tandem solar cell design. Appl. Phys. Lett. 99, 063301 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    D.W. Zhao, L. Ke, Y. Li, S.T. Tan, A.K.K. Kyaw, H.V. Demir, X.W. Sun, D.L. Carroll, G.Q. Lo, D.L. Kwong, Optimization of inverted tandem organic solar cells. Sol. Energ. Mat. Sol. C. (2010 in press, Corrected Proof)Google Scholar
  46. 46.
    S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W.L. Kwan, G. Li, Y. Yang, Highly efficient tandem polymer photovoltaic cells. Adv. Mater. 22, 380–383 (2010)CrossRefGoogle Scholar
  47. 47.
    X.W. Sun, D.W. Zhao, C.Y. Jiang, A.K.K. Kyaw, G.Q. Lo, D.L. Kwong, Efficient tandem organic solar cells with an Al/MoO(3) intermediate layer. Appl. Phys. Lett. 93, 083305 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    K. Lee, J.Y. Kim, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E.D. Peterson, J. Liu, G. Fang, D.L. Carroll, Photovoltaic-thermal solar energy collectors based on optical tubes. Sol. Energ. 85, 450–454 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsWake Forest UniversityWinston-SalemUSA

Personalised recommendations