More Realism Please: Introduction to Multiparameter Models

  • Mary Kathryn Cowles
Part of the Springer Texts in Statistics book series (STS, volume 98)


Real-world problems nearly always require statistical models with more than one unknown quantity. However, usually only one, or a few, parameters or predictions are of substantive interest. Our analysis of mercury concentrations in fish tissue provides a simple, but nevertheless typical, example. We may be primarily interested in the population mean of log mercury concentration, but of course we don’t really know the value of the population variance σ2. Therefore, in a realistic model, we must treat σ2 as an unknown parameter along with μ.


Mercury Concentration Posterior Density Prior Density Inverse Gamma Joint Posterior Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. J. Albert, Bayesian Computation using Minitab (Wadsworth, Belmont, CA, 1997)Google Scholar
  2. J. Albert, Bayesian Computation with R (Springer, New York, 2007)MATHCrossRefGoogle Scholar
  3. J. Albert, LearnBayes: Functions for Learning Bayesian Inference (2008). R package version 2.0Google Scholar
  4. T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 2nd edn. (Wiley, 1984)Google Scholar
  5. G. Antelman, Elementary Bayesian Statistics, Edward Elgar Pub (1997)Google Scholar
  6. Y. Atchade, J. Rosenthal, Bernoulli 11, 815 (2005)MathSciNetMATHCrossRefGoogle Scholar
  7. R.L. Bauer, J. Sung, K.H.E. Jr., A. Koul, N.B. Castillo, T. Nemoto, Annals of Surgical Oncology 4(4), 316 (1997)Google Scholar
  8. J.O. Berger, Statistical decision theory and Bayesian analysis (Springer, 1985)Google Scholar
  9. D.A. Berry, Statistics: A Bayesian Perspective (Duxbury Press, Belmont, California, 1996)Google Scholar
  10. C.I. Bliss, Annals of Applied Biology 22, 134 (1935)CrossRefGoogle Scholar
  11. G.E. Box, G.C. Tiao, Bayesian inference in statistical analysis (Addison-Wesley, 1973)Google Scholar
  12. S.P. Brooks, A. Gelman, Journal of Computational and Graphical Statistics 7, 434 (1998)MathSciNetGoogle Scholar
  13. R.L. Burden, D. Faires, Numerical Analysis, 9th edn. (Brooks/Cole, Boston, 2011)Google Scholar
  14. B.P. Carlin, S. Chib, Journal of the Royal Statistical Society, Series B 57(3), 473 (1995)Google Scholar
  15. B.P. Carlin, T.A. Louis, Bayes and Empirical Bayes Methods for Data Analysis, 2nd edn. (Chapman & Hall/CRC, Boca Raton, 2000)MATHCrossRefGoogle Scholar
  16. B.P. Carlin, D.J. Sargent, Statistics in Medicine 15, 1093 (1996)CrossRefGoogle Scholar
  17. S. Chib, Journal of the American Statistical Association 90(432), 1313 (1995)MathSciNetMATHCrossRefGoogle Scholar
  18. S. Chib, I. Jeliazkov, Journal of the American Statistical Association 96(453), 270 (2001)MathSciNetMATHCrossRefGoogle Scholar
  19. P. Congdon, Bayesian Statistical Modelling (Wiley, 2001)Google Scholar
  20. P. Congdon, Applied Bayesian Modelling (Wiley, 2003)Google Scholar
  21. M.K. Cowles, Journal of Statistical Planning and Inference 112(1–2) (2003)Google Scholar
  22. M.K. Cowles, B.P. Carlin, Journal of the American Statistical Association 91, 883 (1996)MathSciNetMATHCrossRefGoogle Scholar
  23. L. Devroye, Non-uniform Random Variate Generation, Springer, (1986)Google Scholar
  24. S. DJ, B. NG, C. BP, V. der Linde A, Journal of the Royal Statistical Society, Series B, 64(4), 583 (2002)Google Scholar
  25. A.E. Gelfand, A.F.M. Smith, Journal of the American Statistical Association 85, 398 (1990)MathSciNetMATHCrossRefGoogle Scholar
  26. A. Gelman, Bayesian Analysis 1(3), 515 (2006)MathSciNetGoogle Scholar
  27. A. Gelman, D.Rubin, Statistical Science 7, 457 (1992)CrossRefGoogle Scholar
  28. A. Gelman, X.L. Meng, H. Stern, Statistica Sinica 6, 733 (1996)MathSciNetMATHGoogle Scholar
  29. A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis, 2nd edn. (Chapman & Hall, 2004)Google Scholar
  30. S. Geman, D. Geman, IEEE Transaction on Pattern Analysis and Machine Intelligence 6, 721 (1984)MATHCrossRefGoogle Scholar
  31. J. Gill, Bayesian Methods for the Social and Behavioral Sciences (Chapman and Hall, 2002)Google Scholar
  32. I.J. Good, The Estimation of Probabilities: An Essay on Modern Bayesian Methods, M.I.T. Press, Cambridge, MA, (1965)MATHGoogle Scholar
  33. J. Greenhouse, L. Waserman, Statistics in Medicine 14, 1379 (1995)CrossRefGoogle Scholar
  34. W. Hastings, Biometrika 57, 97 (1970)MATHCrossRefGoogle Scholar
  35. D.W. Hosmer, S. Lemeshow, Applied logistic regression (Wiley Series in probability and statistics), 2nd edn. (Wiley-Interscience Publication, 2000)Google Scholar
  36. H. Jeffreys, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 186, 453 (1946)MathSciNetMATHCrossRefGoogle Scholar
  37. J. Jensen, Acta Mathematica 30, 175 (1906)MathSciNetMATHCrossRefGoogle Scholar
  38. V. Johnson, J. Albert, Ordinal Data Modeling (Springer, 1999)Google Scholar
  39. R.E. Kass, A.E. Raftery, Journal of the American Statistical Association 90(430), 773 (1995)MATHCrossRefGoogle Scholar
  40. S.L. Lauritzen, D.J. Spiegelhalter, Journal of the Royal Statistical Society, Series B 50, 205 (1988). Reprinted in Shafer and Pearl (1990)Google Scholar
  41. P.M. Lee, Bayesian Statistics: an Introduction, 3rd edn. (Hodder Arnold, 2004)Google Scholar
  42. D. Lindley, A. Smith, Journal of the Royal Statistical Society Series B 34, 1 (1972)MathSciNetMATHGoogle Scholar
  43. D. Lunn, D. Spiegelhalter, A. Thomas, N. Best, Statistics in Medicine 28, 3049 (2009)MathSciNetCrossRefGoogle Scholar
  44. D. Lunn, A. Thomas, N. Best, D. Spiegelhalter, Statistics and Computing 10, 325 (2000)CrossRefGoogle Scholar
  45. P. McCulloch, J.A. Nelder, Generalized Linear Models, 2nd edn. (CRC Press, 1989)Google Scholar
  46. S.B. McGrayne, Scientific American (2011)Google Scholar
  47. S.B. McGrayne, The Theory That Would Not Die: How Bayes Rule Cracked the Enigma Code, Hunted Down Russian Submarines and Emerged Triumphant from Two Centuries of Controversy, Yale University Press (2011)Google Scholar
  48. N. Metropolis, A. Rosenbluth, A. Rosenbluth, A. Teller, E. Teller, Journal of Chemical Physics 21, 1087 (1953)CrossRefGoogle Scholar
  49. D.S. Moore, The Basic Practice of Statistics, 4th edn. (W.H. Freeman and Company, New York, 2007)Google Scholar
  50. R.M. Neal, Annals of Statistics 31, 705 (2003)MathSciNetMATHCrossRefGoogle Scholar
  51. J.A. Nelder, R.W.M. Wedderburn, Journal of the Royal Statistical Society, Series A, General 135, 370 (1972)Google Scholar
  52. M. Novick, P. Jackson, D. Thayer, N. Cole, British Journal of Mathematical and Statistical Psychology 25, 33 (1972)MATHCrossRefGoogle Scholar
  53. S.P. Poplack, A.N. Tosteson, M.R. Grove, W.A. Wells, P.A. Carney, Radiology 217, 832 (2000)Google Scholar
  54. R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008). URL ISBN 3-900051-07-0
  55. C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R (Springer, 2010)Google Scholar
  56. D.J. Spiegelhalter, L.S. Freedman, M. Parmer, Statistics in Medicine 11, 1501 (1993)CrossRefGoogle Scholar
  57. D. Spiegelhalter, A. Thomas, N. Best, W. Gilks, BUGS Examples, Version 0.5. MRC Biostatistics Unit, Cambridge (1995)Google Scholar
  58. C.P. Robert, The Bayesian choice, Springer (2007)Google Scholar
  59. G.G. Woodworth, Biostatistics: A Bayesian Introduction (Wiley, Hoboken, New Jersey, 2004)MATHGoogle Scholar
  60. A. Zellner, An Introduction to Bayesian Inference in Econometrics (Wiley, 1971)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mary Kathryn Cowles
    • 1
  1. 1.Department of Statistics and Actuarial ScienceUniversity of IowaIowa CityUSA

Personalised recommendations