Reprogramming of DPSC to Induced Pluripotent Stem Cells

  • Sibel Yildirim
Chapter
Part of the SpringerBriefs in Stem Cells book series (BRIEFSSTEM)

Abstract

Generating a pluripotent cell in vitro by rewinding the internal clock of any somatic cell to an embryonic state and then forwarding its conversion into the desired differentiated cell fate represents a rational and ongoing approach in regenerative medicine (Yildirim 2012). There are available human tissues with no ethical or surgical concern, such as fat, blood, biopsy specimens, skin, plugged hair, and extracted teeth (Aasen et al. 2008; Sun et al. 2009; Ye et al. 2009; Yan et al. 2010).

Keywords

Mitomycin iPSC 

References

  1. Aasen T et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284PubMedCrossRefGoogle Scholar
  2. Abu-Remaileh M et al (2010) Oct-3/4 regulates stem cell identity and cell fate decisions by modulating Wnt/beta-catenin signalling. EMBO J 29(19):3236–3248PubMedCrossRefGoogle Scholar
  3. Aoi T et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699–702PubMedCrossRefGoogle Scholar
  4. Arakaki M et al (2012) Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 287(13):10590–10601PubMedCrossRefGoogle Scholar
  5. Beltrao-Braga PI et al (2011) Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell TransplantPubMedCrossRefGoogle Scholar
  6. Blelloch R et al (2007) Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1(3):245–247PubMedCrossRefGoogle Scholar
  7. Brambrink T et al (2008) Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2(2):151–159PubMedCrossRefGoogle Scholar
  8. Estrach S et al (2006) Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 133(22):4427–4438PubMedCrossRefGoogle Scholar
  9. Gu K et al (1996) Expression of genes for bone morphogenetic proteins and receptors in human dental pulp. Arch Oral Biol 41(10):919–923PubMedCrossRefGoogle Scholar
  10. Hemberger M et al (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10(8):526–537PubMedCrossRefGoogle Scholar
  11. Huang GT et al (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806PubMedCrossRefGoogle Scholar
  12. Huangfu D et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275PubMedCrossRefGoogle Scholar
  13. James D et al (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132(6):1273–1282PubMedCrossRefGoogle Scholar
  14. Karaoz E et al (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136(4):455–473PubMedCrossRefGoogle Scholar
  15. Kawamura T et al (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460(7259):1140–1144PubMedCrossRefGoogle Scholar
  16. Kerkis I et al (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184(3–4):105–116PubMedCrossRefGoogle Scholar
  17. Kim JY et al (2010a) Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 16(10):3023–3031PubMedCrossRefGoogle Scholar
  18. Kim K et al (2010b) Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 89(8):842–847PubMedCrossRefGoogle Scholar
  19. Li W et al (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27(12):2992–3000PubMedCrossRefGoogle Scholar
  20. Liu L et al (2011) Expression pattern of Oct-4, Sox2, and c-Myc in the primary culture of human dental pulp derived cells. J Endod 37(4):466–472PubMedCrossRefGoogle Scholar
  21. Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70PubMedCrossRefGoogle Scholar
  22. Marchionni C et al (2009) Angiogenic potential of human dental pulp stromal (stem) cells.” Int J Immunopathol Pharmacol 22(3):699–706PubMedCrossRefGoogle Scholar
  23. Marion RM et al (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153PubMedCrossRefGoogle Scholar
  24. Marson A et al (2008) Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3(2):132–135PubMedCrossRefGoogle Scholar
  25. Meissner A et al (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181PubMedCrossRefGoogle Scholar
  26. Nam H and G Lee (2009) Identification of novel epithelial stem cell-like cells in human deciduous dental pulp. Biochem Biophys Res Commun 386(1):135–139PubMedCrossRefGoogle Scholar
  27. Papp B and K Plath (2011) Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res 21(3):486–501PubMedCrossRefGoogle Scholar
  28. Piattelli A et al (2000) bcl-2, p53, and MIB-1 in human adult dental pulp. J Endod 26(4):225–227PubMedCrossRefGoogle Scholar
  29. Plath K Lowry WE (2011) Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet 12(4):253–265PubMedCrossRefGoogle Scholar
  30. Saha K Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5(6):584–595PubMedCrossRefGoogle Scholar
  31. Sakai VT et al (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89(8):791–796PubMedCrossRefGoogle Scholar
  32. Sato N et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10(1):55–63PubMedCrossRefGoogle Scholar
  33. Sloan AJ et al (1999) TGF-beta receptor expression in human odontoblasts and pulpal cells. Histochem J 31(8):565–569PubMedCrossRefGoogle Scholar
  34. Sun N et al (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci U S A 106(37):15720–15725PubMedCrossRefGoogle Scholar
  35. Tapia N Scholer HR (2010) p53 connects tumorigenesis and reprogramming to pluripotency. J Exp Med 207(10):2045–2048PubMedCrossRefGoogle Scholar
  36. Thesleff I et al (1995) Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol 39(1):35–50PubMedGoogle Scholar
  37. Utikal J et al (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122(Pt 19):3502–3510PubMedCrossRefGoogle Scholar
  38. Wen Y et al (2012) Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Eng Part A 18(15–16):1677–85PubMedCrossRefGoogle Scholar
  39. Xu RH et al (2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3(2):196–206PubMedCrossRefGoogle Scholar
  40. Yan X et al (2010) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19(4):469–480PubMedCrossRefGoogle Scholar
  41. Ye Z et al (2009) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114(27):5473–5480PubMedCrossRefGoogle Scholar
  42. Yildirim S (2012) Induced pluripotent stem cells. Springer, New YorkCrossRefGoogle Scholar
  43. Yildirim S et al (2008) The role of dental pulp cells in resorption of deciduous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105(1):113–120PubMedCrossRefGoogle Scholar
  44. Zhao X et al (2012) Characterization of alpha-smooth muscle actin positive cells during multilineage differentiation of dental pulp stem cells. Cell Prolif 45(3):259–265PubMedCrossRefGoogle Scholar

Copyright information

© Author 2013

Authors and Affiliations

  • Sibel Yildirim
    • 1
  1. 1.Department of Pediatric DentistrySelcuk University, Faculty of DentistryKonyaTurkey

Personalised recommendations