Heat Content and Temperature of the Ocean

Chapter

Abstract

The global ocean is a vast body of water covering approximately two thirds of Earth’s surface and having an average depth around 4,000 m. Temperatures in the ocean can range from a balmy 30°C in the surface layers of the tropics to an icy cold −2°C in polar regions and at abyssal depths. Apart from the strong spatial variability, water temperatures at a place also change on all time scales, from hours to decades. Variability in surface water temperatures affects air-sea heat exchange and is an important factor determining the nature and strength of ocean–atmosphere coupling. Changes in ocean temperatures imply expansion or contraction of the water column and can thus have a major impact on sea level. And given the large heat capacity of seawater compared to that of air and the large mass of the oceans compared to that of the atmosphere, relatively small fluctuations in oceanic temperatures imply substantial changes in heat content, which are essential for properly accounting for the planet’s energy balance. As such, taking the temperature of the oceans and determining changes in its heat content is an essential diagnostic of the state of Earth’s climate and the overall health of our planet.

Keywords

Microwave Convection Heat Content Europe Shipping 

Glossary

CTD (conductivity- temperature-depth)

Instrument used to obtain vertical profiles of salinity, temperature, and pressure in the ocean at resolutions up to 1 m.

Heat content

Amount of energy contained in thermal motion associated with any volume of matter, which is proportional to its temperature and specific heat.

Mixed layer

Near-surface layer where turbulent mixing primarily induced by atmospheric forcing produces homogeneous conditions of temperature, salinity, and other water properties.

Objective analysis

General mathematical procedure by which the value of a variable of interest at a given location and time is derived from similar observations at other times and/or places (also sometimes referred to as optimal interpolation).

Potential temperature

Temperature attained by a fluid parcel if measured at a given standard pressure (typically 1,000 hPa corresponding approximately to atmospheric pressure at the ocean surface).

Specific heat

Amount of energy per unit mass necessary to change the temperature of a given substance by 1°C, with typical values for seawater around 4,000 J/kg/°C.

Thermistor

Sensor that uses known thermal dependences of electrical resistance to determine temperature.

Thermocline

Region of enhanced vertical temperature gradients separating well-mixed layers near the surface from the layers with weak thermal stratification found in the deep ocean.

XBT (eXpendable BathyThermograph)

Instrument used to obtain essentially continuous recordings of temperature with depth, from the surface to about 700 m, which can be deployed from a ship underway and without having to be retrieved.

Notes

Acknowledgments

The author is indebted to J. Carton, G. Johnson, J. Kennedy, J. Lyman, M. Palmer, K. von Schuckmann, and S. Walker for help with the figures reproduced here. The support of NASA and the National Oceanographic Partnership Program is gratefully acknowledged.

Bibliography

Primary Literature

  1. 1.
    Stommel H (1965) The Gulf stream: a physical and dynamical description, 2nd edn. University of California Press, Berkeley, 248 ppGoogle Scholar
  2. 2.
    Thomson CW (1877) The voyage of the Challenger, vol 2, The Atlantic. Macmillan, London, 396 ppGoogle Scholar
  3. 3.
    Wüst G, Defant A (1936) Atlas zur Schichtung und Zirkulation des Atlantischen Ozeans. Schnitte und Karten von Temperatur, Salzgehalt und Dichte. In: Wissenschaftliche Ergebnisseder Deutschen Atlantischen Expedition auf dem Forschungs-und Vermessungsschiff “Meteor” 1925–1927, 6: Atlas, 103 platesGoogle Scholar
  4. 4.
    Gill AE (1982) Atmosphere–ocean dynamics. Academic, New York, 662 ppGoogle Scholar
  5. 5.
    Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans: their physics, chemistry and general biology. Prentice-Hall, New YorkGoogle Scholar
  6. 6.
    Talley LD (2007) In: Sparrow M, Chapman P, Gould J (eds) Hydrographic atlas of the world ocean circulation experiment (WOCE), vol 2, Pacific Ocean. International WOCE Project Office, SouthamptonGoogle Scholar
  7. 7.
    Baker DJ Jr (1981) Ocean instruments and experiment design. In: Warren BA, Wunsch C (eds) Evolution of physical oceanography. MIT Press, CambridgeGoogle Scholar
  8. 8.
    Spilhaus AF (1938) A bathythermograph. J Mar Res 1:95–100Google Scholar
  9. 9.
    Spilhaus AF (1940) A detailed study of the surface layers of the ocean in the neighborhood of the Gulf Stream with the aid of rapid measuring hydrographic instruments. J Mar Res 3:51–75Google Scholar
  10. 10.
    Snodgrass JM (1968) Instrumentation and communications. In: Brahtz JF (ed) Ocean engineering: goals, environment, technology. Wiley, New York, pp 393–477Google Scholar
  11. 11.
    Lyman JM, Johnson GC (2008) Estimating annual global upper-ocean heat content anomalies despite irregular in situ ocean sampling. J Climate 21:5629–5641ADSCrossRefGoogle Scholar
  12. 12.
    Hanawa K, Rual P, Bailey R, Sy A, Szabados M (1995) A new depth-time equation for Sippican or TSK T-7, T-6, and T-4 expendable bathythermographs (XBT). Deep-Sea Res I 42:1423–1451CrossRefGoogle Scholar
  13. 13.
    Willis JK, Lyman JM, Johnson GC, Gilson J (2009) In situ data biases and recent ocean heat content variability. J Atmos Ocean Tech 26:846–852CrossRefGoogle Scholar
  14. 14.
    Gregg MC (1998) Estimation and geography of diapycnal mixing in the stratified ocean. In: Imberger J (ed) Physical processes in lakes and oceans, vol 54. Amer Geophys Union, Washington, DC, pp 305–338CrossRefGoogle Scholar
  15. 15.
    Thorpe SA (2004) Recent developments in the study of ocean turbulence. Ann Rev Earth Planet Sci 32:91–109ADSCrossRefGoogle Scholar
  16. 16.
    Siedler G, Church J, Gould J (2001) Ocean circulation and climate: observing and modelling the global ocean. Academic, BostonGoogle Scholar
  17. 17.
    Roemmich D, Johnson GC, Riser GCS, Davis R, Gilson J, Owens WB, Garzoli SL, Schmid C, Ignaszewski M (2009) The argo program: observing the global ocean with profiling floats. Oceanography 22:34–43CrossRefGoogle Scholar
  18. 18.
    Freeland, H, Roemmich D, Garzoli S, LeTraon PY, Ravichandran M, Riser S, Thierry V, Wijffels S, Belbéoch M, Gould J, Grant F, Ignazewski M, King B, Klein B, Mork K, Owens B, Pouliquen S, Sterl A, Suga T, Suk M, Sutton P, Troisi A, Vélez-Belchi P, Xu J (2010) Argo – A decade of progress. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of the OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, 21–25 Sep 2009Google Scholar
  19. 19.
    Woodruff SD, Diaz HF, Kent EC, Reynolds RW, Worley SJ (2008) The evolving SST record from ICOADS. In: Brönnimann S, Luterbacher J, Ewen T, Diaz HF, Stolarski RS, Neu U (eds) Climate variability and extremes during the past 100 years, vol 33, Advances in global change research. Springer, Dordrecht, pp 65–83CrossRefGoogle Scholar
  20. 20.
    Reynolds RW, Smith TM (1994) Improved sea surface temperature analyses using optimal interpolation. J Climate 7:929–948ADSCrossRefGoogle Scholar
  21. 21.
    Donlon C, Robinson IS, Casey KS, Vasquez-Cuervo J, Armstrong E, Arino O, Gentlemann CL, May DA, LeBorgne P, Piolle J, Barton I, Beggs H, Poulter DJS, Merchant CJ, Bingham A, Heinz S, Harris A, Wick GA, Emery B, Minnett PJ, Evans R, Llewellyn-Jones D, Mutlow CT, Reynolds R, Hawamura H, Rayner NA (2007) The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull Am Met Soc 88:1197–1213CrossRefGoogle Scholar
  22. 22.
    McPhaden MJ, Busalacchi AJ, Cheney R, Donguy J-R, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT, Niller PP, Picau J, Reynolds RW, Smith N, Takeuchi K (1998) The tropical ocean-global atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103:14169–14240ADSCrossRefGoogle Scholar
  23. 23.
    Bourlès B, Lumpkin R, McPhaden MJ, Hernandez F, Nobre P, Campos E, Yu L, Planton S, Busalacchi A, Moura AD, Servain J, Trotte J (2008) The PIRATA program: history, accomplishments, and future directions. Bull Am Met Soc 89:1111–1125CrossRefGoogle Scholar
  24. 24.
    McPhaden MJ, Meyers G, Ando K, Masumoto Y, Murty VSN, Ravichandran M, Syamsudin F, Vialard J, Yu L, Yu W (2009) RAMA: the research moored array for African-Asian-Australian monsoon analysis and prediction. Bull Am Meteorol Soc 90:459–480CrossRefGoogle Scholar
  25. 25.
    Send U, Weller RA, Wallace D, Chavez F, Lampitt RL, Dickey T, Honda M, Nittis K, Lukas R, McPhaden M, Feely R (2010) OceanSITES. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, 21–25 Sep 2009. ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.78 Google Scholar
  26. 26.
    Michaels AF, Knap AH (1996) Overview of the U.S. JGOFS BATS and hydrostation S program. Deep-Sea Res 43(2–3):157–198Google Scholar
  27. 27.
    Karl DM, Lukas R (1996) The Hawaii ocean time-series (HOT) program: background, rationale, and field implementation. Deep-Sea Res II 43:129–156CrossRefGoogle Scholar
  28. 28.
    White WB, Tai C-K (1995) Inferring interannual changes in global upper ocean heat storage from TOPEX altimeter. J Geophys Res 100:24943–24954ADSCrossRefGoogle Scholar
  29. 29.
    Willis JK, Roemmich D, Cornuelle B (2004) Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J Geophys Res 109:C12036. doi:10.1029/2003JC002260 ADSCrossRefGoogle Scholar
  30. 30.
    Ponte RM (1999) A preliminary model study of the large-scale seasonal cycle in bottom pressure over the global ocean. J Geophys Res 104:1289–1300ADSCrossRefGoogle Scholar
  31. 31.
    Jayne SR, Wahr JM, Bryan FO (2003) Observing ocean heat content using satellite gravity and altimetry. J Geophys Res 108:3031. doi:10.1029/2002JC001619CrossRefGoogle Scholar
  32. 32.
    Munk WH, Forbes AMG (1989) Global ocean warming: an acoustic measure? J Phys Oceanogr 19:1765–1778ADSCrossRefGoogle Scholar
  33. 33.
    Dushaw B, Au W, Beszczynska-Möller A, Brainard R, Cornuelle B, Duda T, Dzieciuch M, Fahrbach E, Forbes A, Freitag L, Gascard J-C, Gavrilov A, Gould J, Howe B, Jayne S, Johannessen OM, Lynch J, Martin D, Menemenlis D, Mikhalevsky P, Miller JH, Munk WH, Nystuen J, Odom R, Orcutt J, Rossby T, Sagen H, Sandven S, Simmen J, Skarsoulis E, Stephen R, Vinogradov S, Wong KB, Worcester PF, Wunsch C (2010) A global ocean acoustic observing network. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, 21–25 Sep 2009. ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.25Google Scholar
  34. 34.
    Dushaw BD, Worcester PF, Munk WH, Spindel RC, Mercer JA, Howe BM, Metzger K Jr, Birdsall TG, Andrew RK, Dzieciuch MA, Cornuelle BD, Menemenlis D (2009) A decade of acoustic thermometry in the North Pacific Ocean. J Geophys Res 114:C07021. doi: 10.1029/2008JC0051CrossRefGoogle Scholar
  35. 35.
    Boyer TP, Antonov JI, Baranova OK, Garcia HE, Johnson DR, Locarnini RA, Mishonov AV, O’Brien TD, Seidov D, Smolyar IV, Zweng MM (2009) World ocean database 2009. In: Levitus S (ed) NOAA atlas NESDIS 66. US Gov Printing Office, Washington, DC, p 219, DVDsGoogle Scholar
  36. 36.
    Johnson DR, Boyer TP, Garcia HE, Locarnini RA, Baranova OK, Zweng MM (2009) World ocean database 2009 documentation. In: Levitus S (ed) NODC internal report 20. US Government Printing Office, Washington, DC, p 175Google Scholar
  37. 37.
    Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299CrossRefGoogle Scholar
  38. 38.
    Gouretski VV, Koltermann KP (2004) WOCE global hydrographic climatology [CD-ROM], Ber Bundesamt Seeschiffahrt Hydrogr Rep 35. Bundesamt Seeschiffahrt Hydrogr, Hamburg, pp 52Google Scholar
  39. 39.
    Worthington LV (1981) The water masses of the world ocean: some results of a fine-scale census. In: Warren BA, Wunsch C (eds) Evolution of physical oceanography. MIT Press, CambridgeGoogle Scholar
  40. 40.
    Gouretski VV, Kolterman KP (2007) How much is the ocean really warming? Geophys Res Lett 34:L01610. doi 10.1029/2006GL027834 CrossRefGoogle Scholar
  41. 41.
    Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337ADSCrossRefGoogle Scholar
  42. 42.
    Bretherton FP, Davis RE, Fandry CB (1976) Technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res 23:559–582Google Scholar
  43. 43.
    Daley R (1991) Atmospheric data analysis. Cambridge University Press, Cambridge, 457 ppGoogle Scholar
  44. 44.
    Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2010) World ocean atlas 2009, volume 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. U.S. Government Printing Office, Washington, DC, pp 184Google Scholar
  45. 45.
    Wunsch C (1996) The ocean circulation inverse problem. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. 46.
    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470CrossRefGoogle Scholar
  47. 47.
    Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the simple ocean data assimilation (SODA) ocean reanalysis. J Geophys Res 110:C09006. doi:10.1029/2004JC002817 CrossRefGoogle Scholar
  48. 48.
    Wunsch C, Ponte RM, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Climate 20:5889–5911ADSCrossRefGoogle Scholar
  49. 49.
    Köhl A, Stammer D, Cornuelle BD (2007) Interannual to decadal changes in the ECCO global synthesis. J Phys Oceanogr 37:313–337ADSCrossRefGoogle Scholar
  50. 50.
    Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov Y, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308:1431–1435ADSCrossRefGoogle Scholar
  51. 51.
    Roemmich D, Wunsch C (1984) Apparent changes in the climatic state of the deep North Atlantic Ocean. Science 307:447–450Google Scholar
  52. 52.
    Carton JA, Santorelli A (2008) Global decadal upper-ocean heat content as viewed in nine analyses. J Climate 21:6015–6035ADSCrossRefGoogle Scholar
  53. 53.
    Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanism. Annu Rev Mar Sci 2:115–143ADSCrossRefGoogle Scholar
  54. 54.
    Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Climate 19:446–469ADSCrossRefGoogle Scholar
  55. 55.
    Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Climate 21:2283–2296ADSCrossRefGoogle Scholar
  56. 56.
    Thompson DWJ, Kennedy JJ, Wallace JM, Jones PD (2008) A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453:646–649ADSCrossRefGoogle Scholar
  57. 57.
    Rayner NA, Kaplan A, Kent EC, Reynolds RW, Brohan P, Casey KS, Kennedy, JJ, Woodruff SD, Smith TM, Donlon C, Breivik LA, Eastwood S, Ishii M, Brandon T (2010) Evaluating climate variability and change from modern and historical SST observations. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, 21–25 Sep 2009. ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.71 Google Scholar
  58. 58.
    Chen D, Cane MA, Kaplan A, Zebiak SE, Huang DJ (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736ADSCrossRefGoogle Scholar
  59. 59.
    Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100 year reanalysis using only surface pressure data. Bull Am Met Soc 8:175–190CrossRefGoogle Scholar
  60. 60.
    Antonov JI, Levitus S, Boyer TP (2004) Climatological annual cycle of ocean heat content. Geophys Res Lett 31:L04304. doi:10.1029/2003GL018851CrossRefGoogle Scholar
  61. 61.
    von Schuckmann K, Galliard F, Le Traon P-Y (2009) Global hydrographic variability patterns during 2003–2008. J Geophys Res 114. doi:10.1029/2008JC005237Google Scholar
  62. 62.
    Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi:10.1029/2008GL037155CrossRefGoogle Scholar
  63. 63.
    Palmer MD, Antonov J, Barker P, Bindoff N, Boyer T, Carson M, Domingues CM, Gille S, Gleckler P, Good S, Gourtetski V, Guinehut S, Haines K, Harrison DE, Ishii M, Johnson GC, Levitus S, Lozier MS, Lyman JM, Meijers A, von Schuckmann K, Smith D, Wijffels S, Willis J (2010) Future Observations for Monitoring Global Ocean Heat Content. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, 21–25 Sep 2009. ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.68Google Scholar
  64. 64.
    Levitus S, Antonov JL, Wang J, Delworth TL, Dixon KW, Broccoli AJ (2001) Anthropogenic warming of earth’s climate system. Science 292:267–270ADSCrossRefGoogle Scholar
  65. 65.
    Barnett TP, Pierce DW, AchutaRao KM, Gleckler PJ, Santer BD, Gregory JM, Washington WM (2005) Penetration of human-induced warming into the world’s oceans. Science 309:284–287ADSCrossRefGoogle Scholar
  66. 66.
    Lozier MS, Leadbetter S, Williams RG, Roussenov V, Reed MSC, Moore NJ (2008) The spatial pattern and mechanisms of heat content change in the North Atlantic. Science 319:800–803ADSCrossRefGoogle Scholar
  67. 67.
    Church JA, White NJ, Arblaster JM (2005) Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature 438:74–77ADSCrossRefGoogle Scholar
  68. 68.
    White WB, Dettinger MD, Cayan DR (2003) Sources of global warming of the upper ocean on decadal period scales. J Geophys Res 108:3248. doi:10.1029/2002JC001396CrossRefGoogle Scholar
  69. 69.
    Wijffels SE, Willis J, Domingues CM, Barker P, White NJ, Gronell A, Ridgway K, Church JA (2008) Changing eXpendable BathyThermograph fallrates and their impact on estimates of thermosteric sea level rise. J Climate 21:5657–5672. doi:10.1175/2008JCLI2290.1ADSCrossRefGoogle Scholar
  70. 70.
    Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1093. doi:10.1038/nature07080ADSCrossRefGoogle Scholar
  71. 71.
    Stammer D, Köhl A, Awaji T, Balmaseda M, Behringer D, Carton J, Ferry N, Fischer A, Fukumori I, Giese B, Haines K, Harrison DE, Heimbach P, Kamachi M, Keppenne C, Lee T, Masina S, Menemenlis D, Ponte R, Remy E, Rienecker M, Rosati A, Schröter J, Smith D, Weaver A, Wunsch C, Xue Y (2010) Multi-model ensemble ocean synthesis in support of climate diagnostics. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, 21–25 Sep 2009. ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.85 Google Scholar
  72. 72.
    Levitus S (1989) Interpentadal variability of temperature and salinity at intermediate depths of the North Atlantic Ocean, 1970–74 versus 1955–59. J Geophys Res 94:6091–6131ADSCrossRefGoogle Scholar
  73. 73.
    Levitus S, Antonov J, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229ADSCrossRefGoogle Scholar
  74. 74.
    Köhl A, Stammer D (2008) Decadal sea level changes in the 50-year GECCO ocean synthesis. J Climate 21:1876–1890ADSCrossRefGoogle Scholar
  75. 75.
    Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU (2008) The response of the Antarctic circumpolar current to recent climate change. Nature Geosci 1:864–869ADSCrossRefGoogle Scholar
  76. 76.
    Levitus S, Antonov JI, Boyer TP (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi:10.1029/2004GL021592 CrossRefGoogle Scholar
  77. 77.
    Antonov JI, Levitus S, Boyer TP (2005) Thermosteric sea level rise, 1955–2003. Geophys Res Lett 32:L12602. doi:10.1029/2005GL023112ADSCrossRefGoogle Scholar
  78. 78.
    Wunsch C, Heimbach P, Ponte RM, Fukumori I, The ECCO-GODAE Consortium Members (2009) The global general circulation of the ocean estimated by the ECCO-consortium. Oceanography 22:88–103CrossRefGoogle Scholar
  79. 79.
    Fukasawa M, Freeland H, Perkin R, Watanabe T, Uchida H, Nishina A (2004) Bottom water warming in the North Pacific Ocean. Nature 427:825–827. doi:10.1038/nature02337ADSCrossRefGoogle Scholar
  80. 80.
    Johnson GC, Mecking S, Sloyan BM, Wijffels SE (2007) Recent bottom water warming in the Pacific Ocean. J Climate 20:5365–5375. doi:10.1175/2007JCLI1879.1ADSCrossRefGoogle Scholar
  81. 81.
    Johnson GC, Purkey SG, Bullister JL (2008) Warming and freshening in the abyssal southeastern Indian Ocean. J Climate 21:5351–5363. doi:10.1175/2008JCLI2384.1ADSCrossRefGoogle Scholar
  82. 82.
    Purkey SG, Johnson GC (2010) Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J Climate 23:6336–6351ADSCrossRefGoogle Scholar
  83. 83.
    Stein C, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–129ADSCrossRefGoogle Scholar
  84. 84.
    Kawano T, Fukasawa M, Kouketsu S, Uchida H, Doi T, Kaneko I, Aoyama M, Schneider W (2006) Bottom water warming along the pathway of lower circumpolar deep water in the Pacific Ocean. Geophys Res Lett 33:L23613. doi:10.1029/2006GL027933 ADSCrossRefGoogle Scholar
  85. 85.
    Johnson GC, Doney SC (2006) Recent western South Atlantic bottom water warming. Geophys Res Lett 33:L14614. doi 10.1029/2006GL026769ADSCrossRefGoogle Scholar
  86. 86.
    Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev Geophys 42:RG3001. doi: 10.1029/2003RG000139ADSCrossRefGoogle Scholar
  87. 87.
    Klatt O, Boebel O, Fahrbach E (2007) A profiling float’s sense of ice. J Atmos Ocean Technol 24(7):1301–1308CrossRefGoogle Scholar
  88. 88.
    Poulain P, Barbanti R, Font J, Cruzado A, Millot C, Gertman I, Griffa A, Molcard A, Rupolo V, LeBras S, Petit de la Villeon L (2007) MedArgo: a drifting profiler program in the Mediterranean Sea. Ocean Sci 3:379–395ADSCrossRefGoogle Scholar
  89. 89.
    Malone T, DiGiacomo P, Muelbert J, Parslow J, Sweijd N, Yanagi T, Yap H, Blanke B (2010) Building a global system of systems for the coastal ocean. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, 21–25 Sep 2009. ESA Publication WPP-306, doi: 10.5270/OceanObs09.cwp.59Google Scholar
  90. 90.
    Charrassin JB, Hindell M, Rintoul SR, Foquet F, Sokolov S, Biuw M, Costa D, Boehme L, Lovell P, Colman R, Timmermann R, Meijers A, Meredith M, Park Y-H, Bailleul F, Goebel M, Tremblay Y, Bost C-A, McMahon CR, Field IC, Fedak MA, Guinet C (2008) Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proc Nat Aca Sci 105:11634–11639. doi:10.1073/pnas/0800790105ADSCrossRefGoogle Scholar
  91. 91.
    Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ (2004) Underwater gliders for ocean research. J Mar Tech Soc 38:73–84CrossRefGoogle Scholar
  92. 92.
    Eriksen CC, Perry MJ (2009) The nurturing of seagliders by the National Oceanographic Partnership Program. Oceanography 22:146–157CrossRefGoogle Scholar
  93. 93.
    Wilson S, Parisot F, Escudier P, Fellous J-L, Benveniste J, Bonekamp H, Drinkwater M, Fu L, Jacobs G, Lin M, Lindstrom E, Miller L, Sharma R, Thouvenot E (2010) Ocean surface topography constellation: the next 15 years in satellite altimetry. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, 21–25 Sep 2009. ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.92Google Scholar
  94. 94.
    Durand M, Fu L-L, Lettenmaier DP, Alsdorf DE, Rodríguez E, Esteban-Fernandez D (2010) The surface water and ocean topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proc IEEE 98(5):766–779CrossRefGoogle Scholar
  95. 95.
    Gavrilov AN, Mikhalevsky PN (2006) Low frequency acoustic propagation loss in the Arctic Ocean: results of the arctic climate observations using underwater sound experiment. J Acoust Soc Am 119:3694–3706ADSCrossRefGoogle Scholar
  96. 96.
    Heimbach P, Forget G, Ponte RM, Wunsch C, Balmaseda M, Awaji T, Baehr J, Behringer D, Carton J, Ferry N, Fischer A, Fukumori I, Giese B, Haines K, Harrison DE, Hernandez F, Kamachi M, Keppenne C, Köhl A, Lee T, Menemenlis D, Oke P, Remy E, Rienecker M, Rosati A, Smith D, Speer K, Stammer D, Weaver A (2010) Observational requirements for global-scale ocean climate analysis: lessons from ocean state estimation. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, 21–25 Sep 2009, ESA Publication WPP-306, doi: 10.5270/OceanObs09.cwp.42Google Scholar

Books and Reviews

  1. Hall J, Harrison DE, Stammer D (eds) (2010) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2, Venice, 21–25 Sep 2009. ESA Publication WPP-306Google Scholar
  2. Koblinsky C, Smith N (eds) (2001) Ocean observations for the 21st century. GODAE Office/BoM, MelbourneGoogle Scholar
  3. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  4. Sparrow M, Chapman P, Gould J (2007) The world ocean circulation experiment (WOCE) hydrographic atlas, 4 volumes. International WOCE Project Office, SouthamptonGoogle Scholar
  5. Warren BA, Wunsch C (1981) Evolution of physical oceanography. MIT Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Atmospheric and Environmental Research, IncLexingtonUSA

Personalised recommendations