Advertisement

Gravity Recovery and Climate Experiment (GRACE): Detection of Ice Mass Loss, Terrestrial Mass Changes, and Ocean Mass Gains

  • Victor Zlotnicki
  • Srinivas Bettadpur
  • Felix W. Landerer
  • Michael M. Watkins
Chapter

Abstract

The gravity field of the Earth, caused by the distribution of masses inside and on the surface of the Earth, changes in time due to the redistribution of mass. Such mass fluxes can be due both to natural processes (such as the seasonal water cycle, ocean dynamics, or atmospheric variations), as well as due to human actions, such as the systematic withdrawal of groundwater for human consumption. The ability to measure such changes globally is of great significance for understanding the environmental dimension of sustainability.

Keywords

Gravity Field Indian Ocean Dipole Global Precipitation Climatology Project Glacial Isostatic Adjustment Terrestrial Water Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Glossary

Equivalent water thickness

Since time changes in the gravity field are caused by time changes in mass distributions, equivalent water thickness (“EWT”) is the variable thickness of a thin layer of water (thin relative to both the radius of the Earth and the horizontal scale of the signals) draping the Earth that would correspond to the observed changes in gravity. The conversion from gravitational spherical harmonics to water thickness (and vice versa) is unique and well defined, regardless of what actually causes the gravitational changes. The concept is not used when studying changes in the solid Earth, such as glacial isostatic adjustment or earthquakes.

Glacial isostatic adjustment (GIA)

Also known as postglacial rebound, it is the viscoelastic response of the mantle and lithosphere to the removal of the great ice sheets that covered parts of the Earth and peaked 21,000 years ago [65]. The deglaciation was essentially complete 6,000 years ago. The lithosphere rises where the ice sheets used to be, but sinks in other locations.

Ionosphere

A set of layers at altitudes between approximately 80 and 1,000 km above the Earth’s surface, with electrons and electrically charged atoms. The ionosphere leads to a delay to electromagnetic radiation, which is frequency-dependent and changes with local time and solar activity. The GRACE KBR system uses two frequencies to correct for this path delay.

KBR

K-band microwave ranging system measures the distance between the two GRACE satellites using two frequencies, 24 and 32 GHz.

Mascons

Mass concentrations. The term was coined by Muller and Sjogren [60] to describe mass concentrations in the lunar nearside, beneath the center of the surface features termed “mare” (pl. “maria”). Today the term “mascons” refers to an alternative method to solve the GRACE gravity fields in terms of distributed spherical caps or point masses, instead of using the spherical harmonic representation.

Newton’s law of gravitation

It states that every point mass attracts every other point mass with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them: F = G.m1.m2/r2, where m1 and m2 are the masses, r is the distance between them, and G is the universal gravitational constant, G ≈ 6.6738 × 10−11 m3/kg/s2. This law is at the heart of the GRACE measurements, since any specific mass on the Earth is in general at a different distance from the two spacecrafts, causing a slight difference in the gravitational acceleration they impart to the spacecraft, and thus causing a slight but measurable relative acceleration between the spacecrafts.

Satellite

Is an object, natural (like the Moon) or artificial (each GRACE satellite) that orbits around another large object, in this case the Earth. “Orbits” means that the centripetal acceleration due to the speed of the satellite equals the gravitational acceleration between the satellite and the larger object it orbits around; in this manner the satellite neither falls toward Earth, nor escapes its gravitational pull. In practice, the GRACE satellites do fall slightly toward the Earth while they orbit around it, whereas the Moon slowly increases its distance to the Earth.

Spherical harmonics

Are a set of functions of latitude and longitude that form an infinite, orthogonal, normalized set of basis functions whose sum, with appropriate scale coefficients, completely describes any other function defined in terms of spherical coordinates. Spherical harmonics satisfy Laplace’s equation, as does the gravitational potential outside the Earth. Laplace’s equation states that the sum of the second derivatives of the gravitational potential with respect to each of the three directions of space at a point must add up to zero if there are no masses at that point.

Notes

Acknowledgments

This work was performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and at the Center for Space Research, University of Texas-Austin. Copyright 2011 California Institute of Technology.

Bibliography

Primary Literature

  1. 1.
    Alsdorf D, Han S-C, Bates P, Melack J (2010) Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens Environ 114:2448–2456CrossRefGoogle Scholar
  2. 2.
    Awange JL, Sharifi M, Ogonda G, Wickert J, Grafarend EW, Omulo M (2007) The falling Lake Victoria water levels: GRACE, TRIMM and CHAMP satellite analysis of the lake basin. Water Resources Manage. doi:10.1007/s11269-007-9191-y
  3. 3.
    Awange JL, Sharifi MA, Baur O, Keller W, Featherstone WE, Kuhn M (2009) GRACE hydrological monitoring of Australia: current limitations and future prospects. J Spat Sci 54:23–36CrossRefGoogle Scholar
  4. 4.
    Becker M, Llovel W, Cazenave A, Guentner A, Cretaux J-F (2010) Recent hydrological behavior of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations. C R Geosci 342:223–233. http://dx.doi.org/10.1016/j.crte.2009.12.010 CrossRefGoogle Scholar
  5. 5.
    Bettadpur S (2007) CSR Level-2 processing standards document for product release 04 GRACE. The GRACE Project. Center for Space Research, University of Texas at Austin, pp 327–742. http://podaac.jpl.nasa.gov/gravity/grace
  6. 6.
    Boening C, Lee T, Zlotnicki V (2011) A record high ocean bottom pressure in the South Pacific observed by GRACE, J Geophys Res Lett 38:L04602. doi: 10.1029/2010GL046013 CrossRefGoogle Scholar
  7. 7.
    Bruinsma S, Lemoine J-M, Biancale R, Vale`s N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45:587–601. doi: 10.1016/j.asr.2009.10.012 ADSCrossRefGoogle Scholar
  8. 8.
    Cazenave A, Mercier F, Bouille F, Lemoine J-M (1999) Global-scale interactions between the solid Earth and its fluid envelopes at the seasonal time scale. Earth Planet Sci Lett 171:549–559ADSCrossRefGoogle Scholar
  9. 9.
    Chambers DP (2006a) Observing seasonal steric sea level variations with GRACE and satellite altimetry. J Geophys Res 111 (C3). doi: 10.1029/2005JC002914
  10. 10.
    Chambers DP (2006) Evaluation of new GRACE time-variable gravity data over the ocean. Geophys Res Lett 33(17)Google Scholar
  11. 11.
    Chambers DP, Willis JK (2009) Low-frequency exchange of mass between ocean basins. J Geophys Res 114:C11008. doi: 10.1029/2009JC005518 ADSCrossRefGoogle Scholar
  12. 12.
    Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31:L13310. doi: 10.1029/2004GL020461 ADSCrossRefGoogle Scholar
  13. 13.
    Chambers DP, Wahr J, Tamisiea ME, Nerem RS (2010) Ocean mass from GRACE and glacial isostatic adjustment. J Geophys Res 115:B11415. doi: 10.1029/2010JB007530 ADSCrossRefGoogle Scholar
  14. 14.
    Chen JL, Wilson CR, Tapley BD, Famiglietti JS, Rodell M (2005) Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models. J Geodesy 79:532–539. doi: 10.1007/s00190-005-0005-9 ADSCrossRefGoogle Scholar
  15. 15.
    Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313. doi: 10.1126/science.1129007
  16. 16.
    Chen JL, Tapley BD, Wilson CR (2006) Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet Sci Lett 248:353–363CrossRefGoogle Scholar
  17. 17.
    Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313:1958–1960ADSCrossRefGoogle Scholar
  18. 18.
    Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins E (2007) Patagonia icefield melting observed by GRACE. Geophys Res Lett 34(22):L22501. doi: 10.1029/2007GL031871
  19. 19.
    Chen JL, Wilson CR, Blankenship DD, Tapley BD (2009) Accelerated Antarctic ice loss from satellite gravity measurements. Nat Geosci 2:859–862. doi: 10.1038/NGEO694 ADSCrossRefGoogle Scholar
  20. 20.
    Chen JL, Wilson CR, Tapley BD (2010) The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour Res 46:W12526. doi: 10.1029/2010WR009383 ADSCrossRefGoogle Scholar
  21. 21.
    Chen JL, Wilson CR, Tapley BD (2011) Interannual variability of Greenland ice losses from satellite gravimetry. J Geophys Res-Solid Earth 116:B07406. http://dx.doi.org/10.1029/2010JB007789)CrossRefGoogle Scholar
  22. 22.
    Cheng M, Tapley B (1999) Seasonal variations in low degree zonal harmonics of the Earth’s gravity field from satellite laser ranging observations. J Geophys Res 104(B2):2667–2681ADSCrossRefGoogle Scholar
  23. 23.
    Cheng MK, Tapley BD (2004) Variations in the Earth’s oblateness during the past 28 yeas. J Geophys Res 109:B09402. doi: 10.1029/2004JB003028 CrossRefGoogle Scholar
  24. 24.
    Cox CM, Chao BF (2002) Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science 297:831–833ADSCrossRefGoogle Scholar
  25. 25.
    Cretaux J-F, Soudarin L, Davidson FJM, Gennero M-C, Berge-Nguyen M, Cazenave A (2002) Seasonal and interannual geocenter motion from SLR and DORIS measurements: comparison wit with surface loading data. J Geophys Res 107. doi: 10.1029/2002JB001820
  26. 26.
    de Linage C, Rivera L, Hinderer J, Boy J-P, Rochester Y, Lambrotte S, Biancale R (2009) Separation of coseismic and postseismic gravity changes for the 2004 Sumatra-Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophys J Int 176:695–714ADSCrossRefGoogle Scholar
  27. 27.
    Dickey JO, Marcus SL, deViron O, Fukumori I (2002) Recent Earth oblateness variations: unraveling climate and postglacial rebound effects. Science 298:1975–1977ADSCrossRefGoogle Scholar
  28. 28.
    Dobslaw H, Thomas M (2007) Simulation and observation of global ocean mass anomalies. J Geophys Res 112:C05040. doi: 10.1029/2006JC004035 CrossRefGoogle Scholar
  29. 29.
    Egbert GD, Erofeeva SY, Han S-C, Luthcke SB, Ray RD (2009) Assimilation of GRACE tide solutions into a numerical hydrodynamic inverse model. Geophys Res Lett 36:L20609. doi: 10.1029/2009GL040376 ADSCrossRefGoogle Scholar
  30. 30.
    Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s central valley. Geophys Res Lett 38:L03403. doi: 10.1029/2010GL046442 CrossRefGoogle Scholar
  31. 31.
    Garcia-Garcia D, Ummenhofer CC, Zlotnicki V (2011) Australian water mass variations from GRACE data linked to Indo-Pacific climate variability. Remote Sens Environ 115:2175–2183. http://dx.doi.org/10.1016/j.rse.2011.04.007 CrossRefGoogle Scholar
  32. 32.
    Gardner AS, Moholdt G, Wouters B, Wolken GJ, Burgess DO, Sharp MJ, Cogley JG, Braun C, Labine C (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473:357–360. doi: 10.1038/nature10089 ADSCrossRefGoogle Scholar
  33. 33.
    Han S-C, Sauber J, Luthcke SB, Ji C Pollitz FF (2008) Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data. J Geophys Res 113:B11413. doi: 10.1029/2008JB005705 ADSCrossRefGoogle Scholar
  34. 34.
    Han S-C, Kim H, Yeo I-Y, Yeh P, Oki T, Seo K-W, Alsdorf D, Luthcke SB (2009) Dynamics of surface water storage in the Amazon inferred from measurements of inter-satellite distance change. Geophys Res Lett 36:L09403. http://dx.doi.org/10.1029/2009GL037910 CrossRefGoogle Scholar
  35. 35.
    Han S‐C, Sauber J, Luthcke S (2010) Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large‐scale mass redistribution. Geophys Res Lett 37:L23307. doi: 10.1029/2010GL045449 ADSCrossRefGoogle Scholar
  36. 36.
    Han S-C, Ray RD, Luthcke SB (2010) One centimeter-level observations of diurnal ocean tides from global monthly mean time-variable gravity fields. J Geodyn 84:715–729. doi: 10.1007/s00190-010-0405-3 ADSGoogle Scholar
  37. 37.
    Hill EM, Davis JL, Tamisiea ME, Lidberg M (2010) Combination of geodetic observations and models for glacial isostatic adjustment fields in Fennoscandia. J Geophys Res 115:B07403. doi: 10.1029/2009JB006967 CrossRefGoogle Scholar
  38. 38.
    Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177:849–864. doi: 10.1111/j.1365-246X.2009.04139.x ADSCrossRefGoogle Scholar
  39. 39.
    Ivins ER, Watkins MM, Yuan D‐N, Dietrich R, Casassa G, Rlke A (2011) On‐land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. J Geophys Res 116:B02403. doi: 10.1029/2010JB007607 CrossRefGoogle Scholar
  40. 40.
    Khan SA, Wahr J, Bevis M, Velicogna I, Kendrick E (2010) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys Res Lett 37:6501. doi: 10.1029/2010GL042460 CrossRefGoogle Scholar
  41. 41.
    King MA, Altamimi Z, Boehm J, Bos M, Dach R et al (2010) Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv Geophys 31:465–507. http://dx.doi.org/10.1007/s10712-010-9100-4 ADSCrossRefGoogle Scholar
  42. 42.
    Knudsen P, Bingham R, Andersen O, Rio M-H (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geodesy. doi: 10.1007/s00190-011-0485-8
  43. 43.
    Landerer FW, Swenson SC (2011) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res, in pressGoogle Scholar
  44. 44.
    Landerer FW, Dickey JO, Güntner A (2010) Terrestrial water budget of the Eurasian pan‐Arctic from GRACE satellite measurements during 2003–2009. J Geophys Res 115:D23115. doi: 10.1029/2010JD014584 ADSCrossRefGoogle Scholar
  45. 45.
    Leblanc MJ, Tregoning P, Ramillien G, Tweed SO, Fakes A (2009) Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour Res 45:W04408. doi: 10.1029/2008WR007333 CrossRefGoogle Scholar
  46. 46.
    Lemoine JM, Bruinsma S, Loyer S, Biancale R, Marty JC, Perosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39(10):1620–1629ADSCrossRefGoogle Scholar
  47. 47.
    Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36:L04608. doi: 10.1029/2008GL036010 CrossRefGoogle Scholar
  48. 48.
    Leuliette EW, Willis JK (2011) Balancing the sea level budget. Oceanography 24:122–129. http://dx.doi.org/10.5670/oceanog.2011.32 CrossRefGoogle Scholar
  49. 49.
    Liu X, Ditmar P, Siemes C, Slobbe DC, Revtova E, Klees R, Riva R, Zhao Q (2010) DEOS Mass Transport model (DMT-1) based on GRACE satellite data: methodology and validation. Geophys J Int 181:769–788. doi: 10.1111/j.1365-246X.2010.04533.x ADSCrossRefGoogle Scholar
  50. 50.
    Llovel W, Becker M, Cazenave A, Cretaux JF, Ramillien G (2010) Global land water storage change from GRACE over 2002–2009; inference on sea level. CR Geosciences 342:179–188. http://dx.doi.org/10.1016/j.crte.2009.12.004 ADSCrossRefGoogle Scholar
  51. 51.
    Llovel W, Guinehut S, Cazenave A (2010) Regional and interannual variability in sea level over 2002–2009 based on satellite altimetry Argo float data and GRACE ocean mass. Ocean Dyn 60:1193–1204. doi: 10.1007/s10236-010-0324-0 ADSCrossRefGoogle Scholar
  52. 52.
    Lo M-H, Famiglietti JS, Yeh PJ-F, Syed TH (2010) Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resources Res 46:W0551. http://dx.doi.org/10.1029/2009WR007855 CrossRefGoogle Scholar
  53. 53.
    Lombard A, Garcia D, Ramillien G, Cazenave A, Biancale R, Lemoine JM, Flechtner F, Schmidt R, Ishii M (2007) Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth Planet Sci Lett 254:194–202. doi: 10.1016/j.epsl.2006.11.035 ADSCrossRefGoogle Scholar
  54. 54.
    Luthcke SB, Arendt AA, Rowlands DD, McCarthy JJ, Larsen CF (2008) Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J Glaciol 54(188):767–777. http://dx.doi.org/10.3189/002214308787779933 Google Scholar
  55. 55.
    Macrander A, Böning C, Boebel O, Schröter J (2010) Validation of GRACE gravity fields by in-situ data of ocean bottom pressure. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via geodetic-geophysical space techniques. Springer, Berlin. http://dx.doi.org/10.1007/978-3-642-10228-8_14 Google Scholar
  56. 56.
    Matsuo K, Heki K (2010) Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet Sci Lett 290:30–36. doi: 10.1016/j.epsl.2009.11.053 Google Scholar
  57. 57.
    Maximenko N, Niiler P, Rio M-H, Melnichenko O, Centurioni L, Chambers D, Zlotnicki V, Galperin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Ocean Technol. doi: 10.1175/2009JTECHO672.1, http://www.springerlink.com/content/r882426635467007/
  58. 58.
    Mayer-Gürr T, Eicker A, Kurtenbach E, Ilk K-H (2010) ITG-GRACE: global static and temporal gravity field models from GRACE data. Adv Technol Earth Sci 2010(Part 2):159–168. doi: 10.1007/978-3-642-10228-8_13 CrossRefGoogle Scholar
  59. 59.
    Morison J, Wahr J, Kwok R, Peralta-Ferriz C (2007) Recent trends in Arctic Ocean mass distribution revealed by GRACE. Geophys Res Lett 34:L07602. doi: 10.1029/2006GL029016 CrossRefGoogle Scholar
  60. 60.
    Muller PM, Sjogren WL (1968) Mascons: lunar mass concentrations. Science 161:680–684ADSCrossRefGoogle Scholar
  61. 61.
    Nerem RS, Wahr J (2011) Recent changes in the Earth’s oblateness driven by Greenland and Antarctic ice mass loss. Geophys Res Lett 38:L13501. doi: 10.1029/2011GL047879 ADSCrossRefGoogle Scholar
  62. 62.
    O’Keefe JA, Eckels A, Squires RK (1959) The gravitational field of the earth. Astron J 64:245ADSCrossRefGoogle Scholar
  63. 63.
    Padman L, Howard SL, Orsi AH, Muench RD (2009) Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water. Deep-Sea Res Pt II Oceanography 56:818–834. http://dx.doi.org/10.1016/j.dsr2.2008.10.026 ADSCrossRefGoogle Scholar
  64. 64.
    Park J, Watts DR, Donohue K, Jayne S (2008) A comparison of in situ bottom pressure array measurements with GRACE estimates in the Kuroshio extension. Geophys Res Lett 35:L17601. doi: 10.1029/2008GL034778 ADSCrossRefGoogle Scholar
  65. 65.
    Paulson A, Zhong S, Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys J Internat 171:497–508ADSCrossRefGoogle Scholar
  66. 66.
    Parker RL (1975) Theory of ideal bodies for gravity interpretation. Geophys J Roy Astron Soc 42(2):315–334Google Scholar
  67. 67.
    Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149. doi: 10.1146/annurev.earth.32.082503.144359 ADSCrossRefGoogle Scholar
  68. 68.
    Peltier WR, Luthcke SB (2009) On the origins of earth rotation anomalies: New insights on the basis of both “paleogeodetic” data and gravity recovery and climate experiment (GRACE) data. J Geophys Res 114:B11405. doi: 10.1029/2009JB006352 ADSCrossRefGoogle Scholar
  69. 69.
    Peralta‐Ferriz C, Morison J (2010) Understanding the annual cycle of the Arctic Ocean bottom pressure. Geophys Res Lett 37:L10603. doi: 10.1029/2010GL042827 ADSCrossRefGoogle Scholar
  70. 70.
    Ponte RM, Quinn KJ (2009) Bottom pressure changes around Antarctica and wind-driven meridional flows. Geophys Res Lett 36:L13604. doi: 10.1029/2009GL039060 ADSCrossRefGoogle Scholar
  71. 71.
    Quinn KJ, Ponte RM (2008) Estimating weights for the use of time-dependent gravity recovery and climate experiment data in constraining ocean models. J Geophys Res 113:C12013. doi: 10.1029/2008JC004903 ADSCrossRefGoogle Scholar
  72. 72.
    Ray RD, Luthcke SB, Boy J-P (2009) Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data. J Geophys Res 114:C09017. doi: 10.1029/2009JC005362 CrossRefGoogle Scholar
  73. 73.
    Rietbroek R, LeGrand P, Wouters B, Lemoine J-M, Ramillien G, Hughes CW (2006) Comparison of in situ bottom pressure data with GRACE gravimetry in the Crozet-Kerguelen region. Geophys Res Lett 33:L21601. doi: 10.1029/2006GL027452 ADSCrossRefGoogle Scholar
  74. 74.
    Rietbroek R, Brunnabend S-E, Dahle C, Kusche J, Flechtner F, Schröter J, Timmermann R (2009) Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution. J Geophys Res: Oceans 114:C11004. doi: 10.1029/2009JC005449 ADSCrossRefGoogle Scholar
  75. 75.
    Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503. doi: 10.1029/2011GL046583 CrossRefGoogle Scholar
  76. 76.
    Rio MH, Guinehut S, Larnicol G (2011) New CNES‐CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res 116:C07018. doi: 10.1029/2010JC006505 CrossRefGoogle Scholar
  77. 77.
    Riva REM, Gunter BC, Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE (2009) Glacial isostatic adjustment over Antarctica from combined ICEsat and GRACE satellite data. Earth Planet Sci Lett 288:516–523. http://dx.doi.org/10.1016/j.epsl.2009.10.013 ADSCrossRefGoogle Scholar
  78. 78.
    Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. http://dx.doi.org/10.1038/nature08238 ADSCrossRefGoogle Scholar
  79. 79.
    Rowlands DD, Luthcke SB, McCarthy JJ, Klosko SM, Chinn DS, Lemoine FG, Boy J-P, Sabaka TJ (2010) Global mass flux solutions from GRACE: a comparison of parameter estimation strategies—mass concentrations versus stokes coefficients. J Geophys Res 115:B01403. doi: 10.1029/2009JB006546 CrossRefGoogle Scholar
  80. 80.
    Sasgen I, Martinec Z, Bamber J (2010) Combined GRACE and InSAR estimate of West Antarctic ice mass loss. J Geophys Res (Earth Surface) 115:F04010. doi: 10.1029/2009JF001525 CrossRefGoogle Scholar
  81. 81.
    Siegismund F, Romanova V, Köhl A, Stammer D (2011) Ocean bottom pressure variations estimated from gravity, nonsteric sea surface height and hydrodynamic model simulations. J Geophys Res 116:C07021. doi: 10.1029/2010JC006727 CrossRefGoogle Scholar
  82. 82.
    Sun AY, Green R, Rodell M, Swenson S (2010) Inferring aquifer storage parameters using satellite and in situ measurements: estimation under uncertainty. Geophys Res Lett 37:L10401. http://dx.doi.org/10.1029/2010GL043231 ADSCrossRefGoogle Scholar
  83. 83.
    Swenson S (2010) Assessing high-latitude winter precipitation from global precipitation analyses using GRACE. J Hydrometeorol 11:405–420. doi: 10.1175/2009JHM1194.1 ADSCrossRefGoogle Scholar
  84. 84.
    Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from gravity recovery and climate experiment (GRACE) measurements of time-variable gravity. J Geophys Res 107(B9):2193. doi: 10.1029/2001JB000576 CrossRefGoogle Scholar
  85. 85.
    Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi: 10.1029/2005GL025285 CrossRefGoogle Scholar
  86. 86.
    Swenson S, Wahr J (2009) Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol 370(1–4):163–176. doi: 10.1016/j.jhydrol.2009.03.008 CrossRefGoogle Scholar
  87. 87.
    Swenson S, Chambers DP, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res 113. doi: 10.1029/2007JB005338
  88. 88.
    Tamisiea ME, Hill EM, Ponte RM, Davis JL, Velicogna I, Vinogradova NT (2010) Impact of self-attraction and loading on the annual cycle in sea level. J Geophys Res 115:C07004. doi: 10.1029/2009JC005687 CrossRefGoogle Scholar
  89. 89.
    Tapley BD et al (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi: 10.1126/science.1099192 ADSCrossRefGoogle Scholar
  90. 90.
    Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in Northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi: 10.1029/2009GL039401 ADSCrossRefGoogle Scholar
  91. 91.
    Tregoning P, Ramillien G, McQueen H, Zwartz D (2009) Glacial isostatic adjustment and nonstationary signals observed by GRACE. J Geophys Res 114:B06406. doi: 10.1029/2008JB006161 CrossRefGoogle Scholar
  92. 92.
    van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent Greenland mass loss. Science 326:984. doi: 10.1126/science.1178176 ADSCrossRefGoogle Scholar
  93. 93.
    Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:L19503. doi: 10.1029/2009GL040222 ADSCrossRefGoogle Scholar
  94. 94.
    Vianna ML, Menezes V V (2011) Double‐celled subtropical gyre in the South Atlantic Ocean: means, trends, and interannual changes. J Geophys Res 116:C03024. doi: 10.1029/2010JC006574
  95. 95.
    Vinogradova NT, Ponte RM, Tamisiea ME, Quinn KJ, Hill EM, Davis JL (2011) Self-attraction and loading effects on ocean mass redistribution at monthly and longer time scales. J Geophys Res-Oceans 116. http://dx.doi.org/10.1029/2011JC007037
  96. 96.
    Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30229. doi: 10.1029/98JB02844 ADSCrossRefGoogle Scholar
  97. 97.
    Wahr J, Swenson S, Velicogna I (2006) Accuracy of GRACE mass estimates. Geophys Res Lett 33:L06401. doi: 10.1029/2005GL025305 CrossRefGoogle Scholar
  98. 98.
    Willis JK, Lyman JW, Johnson GC, Gilson J (2008) In situ data biases and recent ocean heat content variability. J Oceanic Atmosph Technol 26:846–852. doi: 10.1175/2008JTECHO608.1 ADSCrossRefGoogle Scholar
  99. 99.
    Wouters B, Chambers DP (2010) Analysis of seasonal ocean bottom pressure variability in the Gulf of Thailand from GRACE. Glob Planet Chang 74:76–81. doi: 10.1016/j.gloplacha.2010.08.002 ADSCrossRefGoogle Scholar
  100. 100.
    Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci 3:642–646. doi: 10.1038/NGEO938 ADSCrossRefGoogle Scholar
  101. 101.
    Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi river basin. J Hydrometeorol 9:535–548. doi: 10.1175/2007JHM951.1 ADSCrossRefGoogle Scholar
  102. 102.
    Zlotnicki V, Wahr J, Fukumori I, Song Y-T (2007) Antarctic circumpolar current transport variability during 2003–2005 from GRACE. J Physical Oceanog 37(2):230–244ADSCrossRefGoogle Scholar

Books and Reviews

  1. Cazenave A, Chen J-L (2010) Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Planet Sci Lett 298(2010):263–274. doi: 10.1016/j.epsl.2010.07.035 ADSCrossRefGoogle Scholar
  2. Chambers DP, Schröter J (2011) Measuring ocean mass variability from satellite gravimetry. J Geodyn 52:333–343. doi: 10.1016/j.jog.2011.04.004 CrossRefGoogle Scholar
  3. Dickey J et al (1997) Satellite gravity and the geosphere. US National Research Council, National Academy Press, Washington, DCGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Victor Zlotnicki
    • 1
  • Srinivas Bettadpur
    • 2
  • Felix W. Landerer
    • 3
  • Michael M. Watkins
    • 4
  1. 1.Climate, Oceans and Solid Earth Science Section, Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Center for Space ResearchUniversity of Texas-AustinAustinUSA
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations